Páginas

sexta-feira, 24 de junho de 2016

Aquecimento Global: Uma visão crítica

Aquecimento Global: Uma visão crítica

Luiz Carlos Baldicero Molion 
  • Existem evidências que o clima, entre cerca de 800 a 1200 DC, era mais quente do que o de hoje. Naquela época, os Nórdicos (Vikings) colonizaram as regiões do Norte do Canadá e uma ilha que foi chamada de Groelândia (Terra Verde) e que hoje é coberta de gelo (!?). 
Entre 1350 e 1850, o clima se resfriou, chegando a temperaturas de até cerca de 2°C inferiores às de hoje, particularmente na Europa Ocidental. Esse período é descrito na Literatura como “Pequena Era Glacial”. Após 1850, o clima começou a se aquecer lentamente e as temperaturas se elevaram. Portanto, não há dúvidas que ocorreu um aquecimento global nos últimos 150 anos. 
  • A questão que se coloca é se o aquecimento observado é natural ou antropogênico? A fonte primária de energia para o Planeta Terra é o Sol. Ele emite radiação eletromagnética (energia) principalmente nos comprimentos de onda entre 0,1m e 4,0m (1 micrometro = 1m = 10-6 metros), que caracterizam chamada radiação de ondas curtas (ROC). 
O albedo planetário - percentual de ROC incidente no Planeta que é refletida de volta para o espaço exterior, atualmente cerca de 30% – é resultante da variação da cobertura e do tipo de nuvens, da concentração de aerossóis e partículas em suspensão no ar, e das características da cobertura superfície tais como gelo/neve (90% de reflexão), florestas (12%) e oceanos/lagos (10%) 
  • Portanto, o albedo planetário controla o fluxo de ROC que entra no sistema terra-atmosfera-oceanos: menor albedo, maior entrada de ROC, aquecimento do sistema terra-atmosfera, e vice-versa. 
O de fluxo de ROC não-refletido passa através da atmosfera terrestre e boa parte dele é absorvida pela superfície que se aquece. Porém, para as temperaturas dos corpos, encontrados tanto na superfície como na atmosfera terrestre, os comprimentos de onda emitida estão entre 4,0 um e 50 um, numa faixa espectral denominada radiação de ondas longas (ROL).
  • O fluxo de ROL emitida pela superfície é absorvido por gases, pequenos constituintes, como o vapor d'água (H2O), o gás carbônico (CO2), o metano (CH4), o ozônio (O3), o óxido nitroso (N2O) e compostos de clorofluorcarbono (CFC), vulgarmente conhecidos por freons. Esses, por sua vez, emitem ROL em todas as direções, inclusive em direção à superfície e ao espaço exterior. 
A absorção/emissão desses gases pelas várias camadas atmosféricas reduz a perda de ROL, emitida pela superfície, que escaparia para o espaço exterior, e constitui o chamado efeito-estufa. O vapor d'água é o gás principal de efeito-estufa (GEE) e sua concentração é extremamente variável no espaço e tempo. 
  • Por exemplo, sobre a Floresta Amazônica existe 5 vezes mais vapor d’água que sobre o Deserto do Saara e sobre a Amazônia, ainda, sua concentração varia de 30% entre a estação seca e a chuvosa. Em regiões polares, e em regiões tropicais a uma altura acima de 4 km, existe muito pouco vapor d’água e o efeito-estufa é fraco. 
O gás carbono (CO2) é o segundo GEE em importância, com concentração até 100 vezes inferior à do vapor d'água. É o gás que tem causado grande polêmica, pois sua concentração, embora baixa, aumentou de 315 ppmv (1ppmv = 1 parte por milhão por volume, ou seja, 1 mililitro de gás por metro cúbico de ar) em 1958 para 379 ppmv em 2005, crescendo à taxa média de 0,4% ao ano, sendo esse crescimento atribuído às emissões decorrentes das atividades humanas, como a queima de combustíveis fósseis e florestas tropicais. 
  • O metano (CH4), com concentrações muito pequenas, na ordem de 1,7 ppmv, também vinha mostrando um significativo aumento de 1,0% ao ano, atribuído às atividades agropecuárias. Mas, a partir de 1998, a taxa de crescimento anual de sua concentração passou a diminuir inexplicavelmente, embora as fontes antrópicas continuem aumentando. 
Os gases restantes apresentam concentrações ainda menores que as citadas, porém parecem estar aumentando também. O efeito estufa faz com que a temperatura média global do ar, próximo à superfície da Terra, seja cerca de 15°C. Caso ele não existisse, a temperatura da superfície seria 18°C abaixo de zero, ou seja, o efeito-estufa é responsável por um aumento de 33°C na temperatura da superfície do Planeta! 
  • Logo, ele é benéfico para o Planeta, pois gera condições que permitem a existência da vida como se a conhece. Em resumo, a estabilidade do clima da Terra resulta do balanço entre o fluxo de ROC absorvido pelo Planeta e o fluxo de ROL emitido para o espaço (ROC = ROL). O aquecimento do clima global ocorreria, por exemplo, ou pela redução de albedo planetário, que aumentaria ROC absorvida, ou pela intensificação do efeito-estufa, que reduziria a perda de ROL para o espaço exterior. 
A hipótese do efeito-estufa intensificado é, portanto, fisicamente simples: mantidos a produção de energia solar e o albedo planetário constantes, quanto maior forem as concentrações dos GEE, menor seria a fração de radiação de ondas longas, emitida pela superfície, que escaparia para o espaço (redução do fluxo de ROL) e, conseqüentemente, mais alta a temperatura do Planeta. 
  • É dito que a concentração de CO2 passou de 280 ppmv, na era pré- industrial para os atuais 380 ppmv, um aparente aumento de 35% da concentração desse gás nos últimos 150 anos. Utilizando tais concentrações nas simulações feitas por modelos de clima global, o incremento na temperatura média global resultante estaria entre 0,5°C e 2,0°C, conforme o modelo utilizado. 
Entretanto, de acordo com o Sumário para Formuladores de Políticas, extraído do Relatório da Quarta Avaliação do Painel Intergovernamental de Mudanças Climáticas (SPM/AR4/ IPCC, 2007), o aumento “observado” está entre 0,4 e 0,7ºC. Ou seja, o aumento observado está situado no limite inferior dos resultados produzidos pelos atuais modelos climáticos utilizados para testar a hipótese da intensificação do efeito-estufa. 
  • Porém, se a concentração de CO2 dobrar nos próximo 100 anos, de acordo com os modelos de simulação, poderá haver um aumento da temperatura média global entre 2° e 4,5ºC, não inferior a 1,5°C conforme afirmado no SPM/AR4/IPCC. Os efeitos desse aumento de temperatura seriam catastróficos! 
Segundo a mesma fonte, uma das conseqüências seria a expansão volumétrica da água dos oceanos que, associada ao degelo parcial das geleiras e calotas polares, notadamente o Ártico, aumentaria os níveis dos mares entre vinte e sessenta centímetros. 
  • Esse fato, dentre outros impactos sociais, forçaria a realocação dos 60% da Humanidade que vive em regiões costeiras. Na seqüência, foi discutido o estado atual do conhecimento sobre o assunto e algumas das limitações dos modelos de simulação do clima. 
Variação da Temperatura nos últimos 150 anos:
  • Vê-se que, até aproximadamente 1920, houve apenas variabilidade interanual em princípio, não tendo ocorrido aumento expressivo de temperatura nesse período extenso, embora haja relatos de ondas de calor como, por exemplo, a de 1896 nos Estados Unidos, que deixou mais de 3 mil mortos somente em Nova Iorque. Porém, entre 1920 e 1946, o aumento global foi cerca de 0,4°C. 
No Ártico, em particular, em que há medições desde os anos 1880, o aumento foi cerca de 10 vezes maior nesse período. Na seqüência, entre 1947 e 1976, houve um resfriamento global de cerca de 0,2°C (reta inclinada), não explicado pelo IPCC e, a partir de 1977, a temperatura média global aumentou cerca de 0,4°C . 
  • O próprio IPCC concorda que o primeiro período de aquecimento, entre 1920 e 1946, pode ter tido causas naturais, possivelmente o aumento da produção de energia solar e a redução de albedo planetário, discutidas mais abaixo. 
Antes do término da Segunda Guerra Mundial, as emissões decorrentes das ações antrópicas eram cerca de 6% das atuais e, portanto, torna-se difícil argumentar que os aumentos de temperatura, naquela época, tenham sido causados pela intensificação do efeito-estufa pelas emissões antrópicas de carbono. 
  • A polêmica que essa série de anomalias tem causado reside no fato de o segundo aquecimento, a partir de 1977, não ter sido verificado, aparentemente, em todas as partes do Globo. A série de temperatura média para os Estados Unidos, por exemplo, não mostrou esse segundo aquecimento, sendo a década dos anos 1930 mais quente que a dos anos 1990. 
Em adição, a média da temperatura global, obtida com dados dos instrumentos MSU (Microwave Scanning Unit) a bordo de satélites a partir de 1979, mostrou uma grande variabilidade anual, com um pequeno aquecimento global de 0,076°C por década, segundo John Christy e Roy Spencer, da Universidade do Alabama, enquanto os registros instrumentais de superfície mostraram um aquecimento de 0,16°C por década, ou seja, duas vezes maior no mesmo período. 
  • Para o Hemisfério Sul, satélites mostraram um aquecimento menor, de 0,052°C por década. Em princípio, satélites são mais apropriados para medir temperatura global, pois fazem médias sobre grandes áreas, incluindo oceanos, enquanto as estações climatométricas de superfície registram variações de seu micro ambiente, representando as condições atmosféricas num raio de cerca de 150 metros em seu entorno. 
As estações climatométricas apresentam outro grande problema, além da não-padronização e mudança de instrumentação ao longo dos 150 anos passados. As séries mais longas disponíveis são de estações localizadas em cidades do “Velho Mundo” que se desenvolveram muito, particularmente depois da Segunda Guerra Mundial. 
  • Em média, a energia disponível do Sol (calor) é utilizada para evapotranspiração (evaporação dos solos e superfícies de água + transpiração das plantas) e para o aquecimento do ar durante o dia. Sobre superfícies vegetadas, a maior parte do calor é usada para a evapotranspiração, que resfria a superfície, e o restante para aquecer o ar. 
Com a mudança da cobertura superficial, de campos com vegetação para asfalto e concreto, a evapotranspiração é reduzida e sobra mais calor para aquecer o ar próximo da superfície, aumentando sua temperatura. 
  • Adicione-se, ainda, o calor liberado pelos veículos e pelos edifícios aquecidos, particularmente em regiões fora dos trópicos no inverno. Esse é o chamado efeito de ilha de calor, que faz as temperaturas do ar serem, em média, 3°C a 5°C maiores nos grandes centros urbanos quando comparadas às de suas redondezas. 
Analisando os dados de Beijing e Wuhan, China, Ren et al (2007), por exemplo, encontraram aumentos anuais e sazonais nas temperaturas urbanas entre 65-80% e 40-61%, respectivamente, com relação às estações rurais de suas vizinhanças. 
  • Em outras palavras, é impossível retirar o efeito de ilha de calor das séries de temperaturas urbanas. Uma das possibilidades, pois, é que o aquecimento a partir de 1977, seja, em parte, resultante da urbanização em torno das estações climatométricas, ou seja, um aquecimento local e não global.
Finalmente, um aspecto muito importante é que as séries de 150 anos são curtas para capturar a variabilidade de prazo mais longo do clima. O período do final do Século XIX até as primeiras décadas do Século XX foi o final da “Pequena Era Glacial”, um período frio, bem documentado, que perdurou por cinco séculos. 
  • E esse período coincide com a época em que os termômetros começaram a ser instalados mundialmente. Portanto, o início das séries instrumentais de 150 anos, utilizada no Relatório do IPCC, ocorreu num período relativamente mais frio que o atual e leva, aparentemente, à conclusão errônea que as temperaturas atuais sejam muito altas ou “anormais” para o Planeta. 
Concluiu-se que existem problemas de representatividade, tanto espacial como temporal, das séries de temperatura observadas na superfície da Terra, o que torna extremamente difícil seu tratamento e sua amalgamação em uma única série. E que estações climatométricas de superfície, portanto, são inadequadas para determinar a temperatura média global da atmosfera terrestre, se é que se pode falar, cientificamente, numa “temperatura média global”.

Gases de Efeito-Estufa:
  • No Sumário para Formuladores de Políticas do IPCC, afirma-se que o gás carbônico é o principal gás antropogênico e que sua concentração de 379 ppmv em 2005 foi a maior ocorrida nos últimos 650 mil anos, período em que ficou limitada entre 180 e 300 ppmv. 
O aumento de sua concentração nos últimos 150 anos foi atribuído às emissões por queima de combustíveis fósseis e mudanças do uso da terra. Monte Hieb e Harrison Hieb, porém, não concordam com tal afirmação. Para eles, mais de 97% das emissões de gás carbônico são naturais, provenientes dos oceanos, vegetação e solos, cabendo ao Homem menos de 3%, total que seria responsável por uma minúscula fração do efeito estufa atual, algo em torno de 0,12 %. 
  • Em seu Relatório, o IPCC utilizou as concentrações medidas em Mauna Loa, Havaí, cuja série foi iniciada por Charles Kelling no Ano Geofísico Internacional (1957-58). Essa série foi estendida para os últimos 420 mil anos, utilizando-se as estimativas de concentração de CO2 obtidas das análises da composição química das bolhas de ar aprisionadas nos cilindros de gelo (“ice cores”), que foram retirados da capa de gelo na Estação de Vostok, Antártica, por perfuração profunda (até cerca de 3.600 m). 
A curva superior é a concentração de CO2, que variou entre 180 e 300 ppmv (escala à esquerda), e a inferior é a dos desvios de temperatura do ar, entre – 8 e + 6 °C (escala á direita). Uma análise cuidadosa dessa mostra, claramente, que a curva de temperatura apresentou 4 picos, superiores à linha de zero (tracejada), que representam os interglaciais passados – períodos mais quentes, com duração de 10 mil a 12 mil anos que separam as eras glaciais que, por sua vez, duram cerca de 100 mil anos cada uma – a cerca de 130 mil, 240 mil, 320 mil e 410 mil anos antes do presente. 
  • Portanto, as temperaturas dos interglaciais passados parecem ter sido superiores às do presente interglacial, enquanto as concentrações de CO2 correspondentes foram inferiores a 300 ppmv. 
Lembrando que a concentração atual atingiu cerca de 380 ppmv, poder-se-ia concluir que as concentrações de CO2 parecem não ter sido responsável pelas temperaturas altas dos interglaciais passados. Entretanto, segundo o glaciologista Zbigniew Jaworowski, nunca foi demonstrado que a metodologia dos cilindros de gelo tenha produzido resultados confiáveis e que ela sempre tendeu a produzir concentrações de CO2 30% a 50% abaixo das reais por vários motivos. 
  • Um deles é que a hipótese de que a composição química e isotópica original do ar na bolha aprisionada permaneça inalterada por milhares de anos não é verdadeira, pois ocorrem tanto reações químicas como difusão de ar nas bolhas por estarem submetidas a pressões que chegam a ser, nas camadas mais profundas, mais de 300 vezes superiores às da atmosfera.
Some-se a isso o fato do ar da bolha ser cerca de 1000 anos mais novo que o gelo que o aprisionou, conforme afirmaram Nicolas Caillon e colegas em 2003. Isso porque o aprisionamento da bolha de ar pelo gelo não é instantâneo, já que o processo de precipitação/derretimento da neve passa por vários ciclos (verões/invernos) e é necessário um acúmulo de 80 metros de altura para a neve, em sua base, sofrer uma pressão que a faça se transformar em “neve granulada” (em Inglês, “firn”), que aprisiona a bolha de ar finalmente. 
  • Concentrações obtidas com os cilindros de gelo, portanto, não podem ser comparadas com as medidas atualmente feitas por instrumentos, já que, na melhor das hipóteses, as bolhas de ar nos cilindros de gelo teriam uma representação temporal de 1000 anos. 
Dessa análise, conclui-se que, ou existiram outras causas físicas, que não a intensificação do efeito-estufa pelo CO2, que tenha sido responsáveis pelo aumento de temperatura verificado nesses interglaciais passados, ou as concentrações de CO2 das bolhas no gelo tendem, sistematicamente, a serem subestimadas e, de fato, não representam a realidade da época em que foram aprisionadas. 

Nesse aspecto, embora a técnica de análise das bolhas de ar nos cilindros de gelo tenha sido uma idéia brilhante, ela não produz resultados confiáveis e, portanto, parece ser um método experimental incorreto cientificamente para determinação de concentrações de gases de períodos passados. Em adição, há evidências que a temperatura do ar tenha aumentado antes do aumento da concentração de CO2, como sugeriram Nicolas Caillon e colegas em sua publicação datada de 2003.
  • Ao usar apenas a série de Mauna Loa, o IPCC deixa a impressão que cientistas não teriam se preocupado em medir a concentração de CO2 antes de 1957. Entretanto, em fevereiro de 2007, o biólogo alemão Ernst Beck catalogou um conjunto de mais de 90 mil medições diretas de CO2 de 43 estações do Hemisfério Norte, obtidas entre 1812 e 2004, por vários pesquisadores renomados, três dos quais ganhadores do Premio Nobel. 
É aparente que a concentração de CO2 ultrapassou o valor de 379 ppmv várias vezes no século passado, particularmente no período 1940- 1942, antes do início das medições em Mauna Loa. Isso contraria a afirmação contida no Sumário do IPCC que a concentração de 379 ppmv, registrada em 2005, tenha sido a maior dos últimos 650 mil anos! 
  • A linha contínua inferior representa a série das concentrações de CO2 dos cilindros de gelo de uma outra estação de pesquisa da Antártica, a Estação de Siple. Similarmente aos de Vostok, os valores permaneceram quase que constantes, abaixo de 300 ppmv, concordando com as afirmações do glaciologista Zbigniew Jaworowski.
Notam concentrações mais elevadas de CO2 com o aumento da temperatura média global ocorrido entre 1925-1946, seguidas de concentrações menores, obtidas no início dos registros de Mauna Loa (1957/58), quando o clima global já estava passando por um resfriamento entre 1947-1976 ). 
  • Ou seja, há evidências que o aumento (redução) de temperatura do ar cause o aumento (redução) das concentrações de CO2 e não o contrário, como afirmado no Sumário para Formuladores de Políticas do IPCC.
Não há comprovação que o CO2 armazenado na atmosfera seja originário de emissões antropogênicas. Afirma-se que o CO2 atmosférico tenha aumentado na taxa anual de 0,4%, correspondendo a um incremento de 3 bilhões de toneladas de carbono por ano (GtC/ano) armazenadas na atmosfera. De acordo com o Sumário do IPCC, as emissões por queima de combustíveis fósseis e florestas tropicais totalizariam 7 GtC/ano. Estima-se que os oceanos, por sua vez, absorvam 2GtC anuais. 
  • Portanto, o balanço não fecha, e ainda faltaria encontrar o sumidouro das 2 GtC/ano restantes, fluxo esse que foi denominado “o carbono desaparecido” na literatura. A vegetação - florestas nativas, como a Amazônia, e plantadas - possivelmente seria a sequestradora desse carbono (Molion, 1988). Por outro lado, sabe-se que a solubilidade do CO2 nos oceanos varia inversamente a sua temperatura. 
Ou seja, oceanos aquecidos absorvem menos CO2 que oceanos frios. Como a temperatura dos oceanos aumentou ao longo do Século XX, é possível que a concentração de CO2 atmosférico tenha aumentado devido à redução de absorção ou ao aumento de emissão pelos oceanos. 
  • A literatura cita que o fluxo para dentro dos oceanos foi estimado em 92 GtC/ano. Um erro de 10% nessa estimativa corresponderia a uma fração três vezes maior que a que fica armazenada na atmosfera anualmente. Outro argumento, que se utiliza para comprovar que o aumento da concentração de CO2 é antropogênico, é a redução da razão 14C/12C. O carbono 14 é radiativo e apresenta uma meia-vida de 5.730 anos. 
Não há mais 14C nos combustíveis fósseis, uma vez que esses foram produzidos há milhões de anos. Assim, sua queima liberaria mais 12C e, por esse motivo, a razão teria decrescido em 2% nos últimos 150 anos. Ocorre que o 14C é formado pela incidência de raios cósmicos galácticos (RCG) – partículas de alta energia provenientes do espaço sideral, cuja contagem é mais elevada durante períodos de baixa atividade solar – na atmosfera e, portanto, quando o Sol está mais ativo, como na primeira metade do Século XX, a entrada de raios cósmicos é reduzida, formando menos 14C. 
  • Essa deve ter sido a possível causa da redução de 2% da razão 14C/12C, se for admitido que ela possa ser medida com tal precisão atualmente. Em outras palavras, os argumentos acima não comprovam que o aumento da concentração de CO2 atmosférico seja causado pelas atividades humanas, como queima de combustíveis fósseis, agropecuária e construção de grandes lagos de hidrelétricas

Aquecimento Global: Uma visão crítica

Modelos de Clima Global:
  • Sabe-se que a absorção de radiação por um gás segue uma lei logarítmica. Ou seja, pequenos incrementos na concentração do gás, quando essa é baixa, produzem aumentos de absorção bem maiores que grandes incrementos quando sua concentração é alta. Do início da era industrial até o presente, a concentração de CO2 já aumentou em cerca de 35%. 
Entretanto, segundo o IPCC, a temperatura média global aumentou cerca de 0,7°C, enquanto modelos de clima global (MCG) produziram aumentos de 1,0°C a 2,7°C para o mesmo aumento de concentração. Os mesmos MCG projetaram incrementos superiores a 10°C (por exemplo, GISS/NASA, 2007) na região do Ártico para concentração de CO2 dobrada, ou seja, cerca de 560 ppmv com relação à de 150 anos atrás. 
  • Porém, a análise das séries de dados de temperatura média do ar, registrados para o setor Atlântico do Ártico a partir de 1880, apresentou um incremento superior a 3°C entre 1886 -1938, quando a Humanidade emitia menos de 10% do carbono que emite hoje, seguido de um decréscimo superior 2ºC até o final da década de 1960. Atualmente, a temperatura média do Ártico está cerca de 1°C abaixo da temperatura média do final da década de 1930. 
Ou seja, exatamente na região, onde os modelos previram os maiores incrementos de temperatura, foi observado o oposto desde o período pós-guerra, a partir do qual o consumo global de combustíveis fósseis se acelerou e a concentração de CO2 passou a subir monotonicamente. 
  • Modelos de clima global (MCG) são programas de computador que utilizam equações ou expressões matemáticas para representar os processos físicos diretos e os de realimentação e/ou interação (“feedback”) entre os diversos componentes do sistema terra-oceano-atmosfera com a finalidade de simular ou avaliar a resposta do sistema climático sob um forçamento radiativo (aumento ou diminuição do fluxo de energia). 
Os processos de feedback são definidos como mecanismos físicos que amplificam (feedback positivo) ou reduzem (feedback negativo) a magnitude da resposta do sistema climático para um dado forçamento radiativo. Que existem sérios problemas com as simulações dos MCGs não é segredo para a comunidade meteorológica. 
  • Os MCGs comumente têm dificuldade em reproduzir as características principais do clima atual, tais como temperatura média global, diferença de temperatura entre equador e pólo, a intensidade e posicionamento das altas subtropicais e das correntes de jato, se não for feito o que, eufemisticamente, é chamado de "sintonia" ou “ajustes”. 
Nos modelos de previsão de tempo e de clima, a informação (dados e resultados), está representada em pontos, ou nós, de uma grade tridimensional colocada sobre a superfície do Globo e que é resultante do cruzamento de linhas de latitude x longitude x altura. A distância entre os pontos da grade determina a resolução espacial dos processos físicos que podem ser resolvidos pelo modelo. 
  • A resolução espacial dos modelos globais era de 250 km a 400km até recentemente e todos os processos físicos, que se desenvolvem em escalas espaciais muito inferiores a essas, precisam ser resolvidos de uma forma particular, precisam ser “parametrizados” como, por exemplo, processos de formação, desenvolvimento, cobertura de nuvens e precipitação que são fundamentais para o balanço radiativo do Planeta. 
A parametrização é, em geral, feita com algoritmos físico-estatísticos que dependem da intuição física do modelador e, portanto, podem não representam a realidade física e serem questionáveis. Nesse aspecto, um dos problemas cruciais são nuvens - seus tipos, formas, constituição e distribuição, tanto em altura como no plano horizontal, e propriedades ópticas - e aerossóis são processos físicos mal-simulados nos modelos. 
  • Em princípio, a temperatura global tende a aumentar principalmente com a presença de nuvens estratiformes (forma de “camadas horizontais”) na alta troposfera. Essas nuvens altas (tipo “cirro”) são mais tênues, constituídas por cristais de gelo em sua maior parte, e tendem a aquecer o Planeta, pois permitem a passagem de ROC, mas absorvem fortemente ROL que escaparia para o espaço exterior, ou seja, nuvens cirro intensificam o efeito-estufa (feedback positivo). 
Por outro lado, nuvens baixas (tipo “estrato”), mais espessas, tendem a esfriá-lo, pois aumentam o albedo planetário (feedback negativo). Por exemplo, o modelo do Serviço Meteorológico Inglês inicialmente previu um aumento superior a 5ºC para o dobro de CO2. 
  • Porém, John Mitchell e colaboradores relataram em 1989 que, apenas mudando as propriedades ópticas das nuvens estratiformes, reduziram o aquecimento para menos de 2ºC, ou seja, uma redução de 60%! 
Em geral, os modelos têm tendência de produzir mais nuvens cirros nas regiões tropicais, resultantes de umidade transportada pelas correntes de ar ascendentes associadas a nuvens de tempestades (cumulo nimbos) e amplificar o aquecimento para um dado forçamento radiativo, gerando um feedback positivo. 
  • Entretanto, Spencer et al (2007), usando dados de satélites, mostraram que a cobertura de nuvens cirros diminui durante o pico da estação chuvosa em regiões tropicais e, como conseqüência, existe maior perda de ROL para o espaço exterior, resfriando o sistema oceano-atmosfera. 
Ou seja, um feedback negativo importante que, aparentemente, não foi incorporado nos MCGs! Em adição, Sumário do IPCC, vê-se que a incerteza que o efeito das nuvens tem no clima (forçamento radiativo negativo de -1,8 Wm-2 ), considerado de nível de entendimento baixo pelo Órgão, é igual, porém, de sinal contrário ao do CO2 (+1,66 Wm-2 ), dito ter nível de entendimento alto. 
  • Em linguagem mais simples, segundo o próprio IPCC, o aumento de aerossóis e da cobertura de nuvens baixas, por refletirem mais radiação solar de volta para o espaço exterior, pode cancelar o aumento do efeito-estufa pelo CO2 ! Associado a esse, outro problema sério de modelagem é a simulação do ciclo hidrológico e seu papel como termostato do sistema Terra-atmosfera. 
Na natureza, a superfície e o ar adjacente tendem a ser resfriado por evaporação da água da chuva e da umidade do solo, pois esse é um processo físico que consome grandes quantidades de calor. Se não existisse convecção (formação de nuvens profundas, tipo “cumulo nimbo”) e o resfriamento dependesse apenas da perda de ROL, o efeito-estufa, sensivelmente intenso nos níveis próximos ao solo, faria com que a temperatura de superfície alcance valores superiores a 70ºC! 
  • As nuvens cumulo nimbos - convecção profunda que os modelos não simulam adequadamente - bombeiam calor latente para fora da camada limite planetária – camada mais próxima da superfície terrestre com cerca de 1000 m de espessura - como se fossem verdadeiras chaminés, e o liberam nos níveis médios e altos da troposfera em que o efeito-estufa é fraco e, de lá, esse calor é irradiado para o espaço exterior. Dessa forma, a convecção profunda "curtocircuita" o efeito-estufa, não permitindo que a temperatura da superfície do Planeta atinja valores elevados. 
O transporte de calor sensível pelas correntes oceânicas para regiões fora dos trópicos também é mais um processo físico parametrizado, e mal resolvido, nos modelos. O calor transportado para o Ártico, por exemplo, aumenta as temperaturas da superfície do Mar da Noruega e, como o efeito-estufa é fraco nessas regiões, devido à baixa concentração de vapor d´água, a emissão de ROL para o espaço aumenta, e o sistema terra-atmosfera-oceano, como um todo, perde mais energia para o espaço exterior. 
  • Em 2006, utilizando dados de Reanálises (NCEP), Molion mostrou que, atualmente, a Escandinávia está perdendo 20 Wm-2 a mais, em média, do que perdia há 50 anos. A discussão acima não esgota, de maneira alguma, os problemas de modelagem dos processos físicos e as possíveis fontes de erros dos MCGs atuais. 
Não há dúvida que o desenvolvimento de modelos seja crítico para se adquirir habilidade futura de entender melhor ou mesmo prever o clima, mas há que se admitir que modelos atuais são representação ainda simples, grosseira, da complexa interação entre os processos físicos diretos e os de feedback, que controlam o clima do globo. Modelos carecem de validação de seus resultados!
  • Portanto, as “previsões” feitas por eles, para os próximos 100 anos, podem estar superestimadas e a hipótese do efeito-estufa intensificado, aceita pela maioria segundo se afirma, pode não ter fundamento sólido, já que os resultados de modelos são um de seus três argumentos básicos utilizados em defesa do aquecimento global antropogênico!
Variabilidade Climática:
  • Além do efeito-estufa, outros processos físicos internos ao sistema terra-atmosfera-oceano, de não menor importância, controlam o clima. Variações da circulação atmosférica, associadas às variações da temperatura de superfície do mar (TSM) como, por exemplo, alterações na freqüência de ocorrência de eventos El Niño-Oscilação Sul (ENOS), são outras causas de mudanças significativas na temperatura global. 
É notória a grande variabilidade causada pelos eventos El Niño (1982, 1987 e 1998), observada na série de temperatura média da troposfera global, produzida pelos sensores MSU a bordo de satélite. O evento El Niño de 1997/98, considerado o evento mais intenso do século passado, produziu anomalia de temperatura do ar global de cerca de 0,8°C (acima de 1,0°C no Hemisfério Norte), enquanto o La Niña de 1984/85, um resfriamento de – 0,5°C, segundo John Christy e Roy Spencer. 
  • Entre um El Niño e um La Niña, portanto, pode haver variações da temperatura média global superiores a 1 °C. Molion, em um artigo publicado em 2005, mostrou que a freqüência de El Niños intensos foi maior entre 1977-1998, o que pode ter contribuído para aquecimento atual, já que El Niños aquecem a baixa troposfera. Conhece-se bem a influência dos oceanos na variabilidade climática de curto prazo (ENOS). 
Mas a variabilidade oceânica de prazo mais longo, e seus efeitos sobre o clima, ainda não são bem conhecidos. Sabe-se que existem mudanças de prazo mais longo nas circulações oceânicas de escala global, da ordem de décadas, como a Oscilação Decadal do Pacífico (ODP), e milênio, como Circulação Oceânica Profunda, e que essas influenciam fortemente o transporte e a distribuição horizontal de calor sensível nos oceanos e, conseqüentemente, as temperaturas do ar, devido às variações nas trocas de calor entre a superfície do oceano e a atmosfera. 
  • Porém, tais efeitos ainda não foram quantificados com a precisão necessária. Convém ressaltar que os oceanos cobrem 71% da superfície terrestre e que o Pacífico, sozinho, ocupa 35% dessa superfície. Como a atmosfera é aquecida por debaixo, os oceanos constituem a condição de contorno inferior mais importante para a atmosfera e para o clima global. 
Portanto, variações nas configurações das TSM, devido às variações de transporte de calor em direção aos pólos, devem produzir mudanças climáticas sensíveis. Há uma surpreendente coincidência entre as fases ODP e a temperatura média global. O resfriamento do clima global durante o período de 1947-1976, não explicado pelo IPCC, coincide com a fase fria da ODP, fase em que o Pacífico Tropical apresentou anomalias negativas de TSM. 
  • O aquecimento entre 1977-1998, além do efeito da urbanização, pode estar relacionado com a fase quente da ODP – período em que o Pacífico Tropical apresentou temperaturas acima da média – durante a qual ocorreu uma freqüência alta de eventos ENOS intensos que, como foi dito, também contribuem para aquecer a baixa troposfera. Em adição, foi observado por Sirpa Häkkinen e Peter Rhines, da NASA, que a Corrente do Golfo do México – corrente marinha que transporta calor para o Atlântico Norte, região da Inglaterra, Escandinávia, Groelândia e Ártico – voltou a ficar mais ativa na metade da década de 1990. 
Com maior transporte de calor sensível, as TSM aumentam e os ventos de oeste retiram mais calor do Atlântico Norte e o transportam para a Europa Ocidental - onde está a maior fração dos termômetros utilizados – que, por conseguinte, apresenta uma mudança climática, um aquecimento local e não global! 
  • Dentre os principais controladores externos, estão a variação da produção de energia do Sol, as mudanças dos parâmetros orbitais da Terra e a tectônica de placas. O Sol é a principal fonte de energia para os processos físicos que ocorrem na atmosfera. Porém, sua produção de energia denominada “constante solar”, em média 1368 Wm-2 , não é propriamente constante. 
Observações recentes, feitas por satélites em apenas dois ciclos e meio de manchas solares de 11 anos, sugerem que sua produção possa variar de 0,2% pelo menos, ou seja, 2,7 Wm-2 dentro de um ciclo. Durante o Ciclo de Gleissberg atual – ciclo solar com um período aproximado de 90 anos - essa variação deve ter sido ainda maior, pois o número máximo de manchas solares nos ciclos de 11 anos variou de cerca de 50 manchas, em 1913, para mais de 200 manchas, em 1957. 
  • O artigo de Mike Lockwood e Claus Fröhlich, publicado em 2007, vê-se que a variação da constante solar pode chegar a 4 Wm-2 entre um máximo e um mínimo solar. Considerando albedo planetário de 30%, 70% dessas variações (1,9 a 2,8 Wm-2 ) chegariam à superfície, o que é superior ao efeito de aquecimento climático (forçamento radiativo, na linguagem do IPCC) de todos os gases antropogênicos liberados pelo Homem nos últimos 150 anos. 
A falta de conhecimento atual, porém, não permite conclusão definitiva que haja influência da variação da produção de energia do Sol no clima, embora o IPCC afirme que ela não seja significativa (+0,12 W m-2 ). Um controlador interno, mas que pode sofrer influências externas é o já citado albedo planetário, cuja variação controla o fluxo de energia solar (ROC) que entra no sistema terra-atmosfera-oceanos. 
  • Erupções vulcânicas explosivas lançam grandes quantidades de aerossóis na estratosfera, aumentam o albedo planetário e podem causar resfriamento significativo durante décadas. O efeito de uma erupção é sentido rapidamente em curto prazo. Pat Minnis e colaboradores da NASA, usando dados do experimento orbital Balanço Radiativo da Terra (ERBE), mostraram, em 1993, que a erupção do Pinatubo, Filipinas, reduziu de 10 a 15 Wm-2 a radiação disponível entre as latitudes 40ºN-40ºS durante vários meses. 
As erupções recentes do El Chichón (1982) e do Monte Pinatubo (1991) causaram resfriamentos durante 3 anos, com temperaturas de até 0,5°C abaixo da média, conforme os dados dos MSU analisados por John Christy e Roy Spencer. Os efeitos de erupções vulcânicas no clima, porém, podem ser de prazo mais longo se elas forem mais freqüentes. 
  • Como entre 1815 e 1912, de maneira geral, a freqüência de erupções vulcânicas foi grande, a concentração de aerossóis e o albedo planetário estiveram altos, e isso pode ter contribuído para manter as temperaturas globais baixas no início da série de temperatura na Figura 1. Porém, no período 1915 a 1956, 
Molion (2006) relatou que a atividade vulcânica foi a menor dos últimos 400 anos e o albedo planetário reduziu-se (aumentou a transparência atmosférica), permitindo maior entrada de ROC no sistema durante 40 anos consecutivos e aumentando o armazenamento de calor nos oceanos e as temperaturas superficiais dos oceanos e do ar. 
  • É muito provável, portanto, que o aquecimento observado entre 1925 e 1946, que corresponde à cerca de 60% do aquecimento verificado nos últimos 150 anos, tenha resultado do aumento da atividade solar, que atingiu seu máximo em 1957/58, e da redução da atividade vulcânica, ou seja, reduções de albedo planetário e aumento da transparência atmosférica, e não do efeito-estufa intensificado pelas atividades humanas que, na época, eram responsáveis por menos de 10% das emissões atuais de carbono! 
Em 1998, o físico dinamarquês Henrik Svensmark sugeriu a hipótese que raios cósmicos galáticos (RCG) produzam aumento da concentração de núcleos de condensação (NCs) – partículas higroscópicas essenciais para dar início à produção de gotas d’água de nuvens e de chuva - ao entrarem na atmosfera terrestre. 
  • O aumento da concentração dos NCs propiciaria o aumento da cobertura de nuvens baixas que, por sua vez aumentariam o albedo planetário e tenderiam a resfriar o Planeta (feedback negativo). O coeficiente de correlação entre os dois fenômenos, contagem de RCG e cobertura de nuvens, é alto (- 0,96). 
Entretanto, Mike Lockwood e Claus Fröhlich, em seu mesmo estudo publicado em 2007, contestaram essa hipótese, argumentando que a atividade solar, em declínio desde 1985, não estaria aumentando a cobertura de nuvens e que a temperatura média global estaria aumentando independentemente da atividade solar. 
  • A afirmação de Lockwood e Fröhlich foi contestada por vários pesquisadores que apontaram falhas em seu artigo, entre outras, a questionável técnica usada pelos autores para suavizar os dados de contagens de RCG e a desconsideração do atraso da resposta dos oceanos a flutuações rápidas dos controladores climáticos. 
Usando dados astronômicos, Shaviv mostrou, em 2002, que o fluxo de RCG deve variar de um fator maior que 2 quando a Terra atravessa os braços galácticos em espiral, o que ocorre a cada 132 ± 25 milhões de anos. 
  • Os exemplos acima citados mostram que o clima é muito complexo, envolvendo controles internos e externos ao sistema terra-atmosfera-oceano, dos quais o efeito-estufa é apenas um dos processos, e que houve aumentos de temperatura em tempos passados, aparentemente sem sua intensificação.
Considerações Finais:
  • Em resumo, a variabilidade natural do Clima não permite afirmar que o aquecimento de 0,7ºC seja decorrente da intensificação do efeito-estufa causada pelas atividades humanas, ou mesmo que essa tendência de aquecimento persistirá nas próximas décadas, como sugerem as projeções produzidas pelo Relatório da Quarta Avaliação do Painel Intergovernamental de Mudanças Climáticas (IPCC). 
A aparente consistência entre os registros históricos e as previsões dos modelos não significa que o aquecimento esteja ocorrendo. Na realidade, as características desses registros históricos conflitam com a hipótese do efeito-estufa intensificado. 
  • O Planeta se aqueceu mais rapidamente entre 1925-1946, quando a quantidade de CO2 lançada na atmosfera era inferior a 10% da atual, e se resfriou entre 1947-1976, quando ocorreu o desenvolvimento econômico acelerado após a Segunda Guerra Mundial. Dados dos MSU a bordo de satélites não confirmaram um aquecimento expressivo pós-1979, que é aparente na série de temperatura obtida com termômetros de superfície. 
No Sumário para Formuladores de Políticas do IPCC, publicado em fevereiro de 2007, afirmou-se que concentração de CO2 aumentou de 35% nos últimos 150 anos. Porém, isso pode ter sido devido a variações internas ao sistema terra-oceano-atmosfera. Sabe-se que a solubilidade do CO2 nos oceanos depende de sua temperatura com uma relação inversa. 
  • Como a temperatura dos oceanos aumentou, devido à redução do albedo planetário e à atividade solar mais intensa entre 1925-1946, a absorção (emissão) de CO2 pelos oceanos pode ter sido reduzida (aumentada) mais CO2 ter ficado armazenado na atmosfera. Portanto, não se pode afirmar que foi o aumento de CO2 que causou o aumento de temperatura. Pode ter sido exatamente ao contrário, ou seja, que o CO2 tenha aumentado em resposta ao aumento de temperatura dos oceanos e do ar adjacente. 
Dados paleoclimáticos, como os obtidos com cilindros de gelo da estação de Vostok, indicaram que as temperaturas do ar estiveram mais elevadas que as atuais nos períodos interglaciais anteriores e que as concentrações desse gás não ultrapassaram 300 ppmv, sugerindo que o aquecimento do clima não dependa da concentração de CO2. 
  • Em adição, existem outros testemunhos indiretos, como os anéis de crescimento de árvores, em que a densidade da madeira varia inversamente ao total pluviométrico em regiões tropicais. Por exemplo, em 1993, Ferraz e seus colaboradores da ESALQ/USP, analisaram um jatobá-mirim colhido na Amazônia Central (Balbina) e constataram que a densidade da madeira de seus anéis de crescimento aumentou nos últimos 400 anos. 
Aceitando-se que a variação das chuvas seja o fator ambiental mais importante no desenvolvimento de uma árvore no meio da Floresta Amazônica, inferiu-se que o jatobá, durante esse período, esteve submetido a um clima regional que, paulatinamente, veio se tornando mais seco. E isso só poderia estar acontecendo se o clima global estivesse se resfriando! 
  • As análises da temperatura da superfície do mar para o período 1999- 2007, elaboradas por este autor com os dados do conjunto de Reanálises do NCEP/NCAR, mostraram uma configuração semelhante à da fase fria anterior da ODP (1947-1976), sugerindo que o Pacífico já esteja em uma nova fase fria 
É possível, portanto, que o clima global venha a se resfriar nos próximos 15 a 20 anos, semelhante ao que ocorreu na fase fria anterior, porém com um agravante! Contrariamente ao período da fase fria anterior, o Sol está entrando num período de baixa atividade, um novo mínimo do Ciclo de Gleissberg e do ciclo de 170 anos. 
  • Observações por satélites mostraram que os valores do fluxo total de ROC, no último mínimo solar em 2006, ficaram abaixo de 1365,3 Wm-2 , inferiores aos mínimos anteriores. A variação da atividade solar nos últimos 300 anos sugere que, nos próximos dois ciclos de manchas solares, ou seja, até cerca do ano 2030, a atividade solar seja comparável às primeiras duas décadas do Século XX. 
Portanto, como o Pacífico está em uma nova fase fria e a atividade solar estará mais baixa, é muito provável que as condições climáticas globais entre 1947-1976 venham a se repetir qualitativamente, ou seja, um arrefecimento global nos próximos 15 a 20 anos. Dados atuais de temperatura média global confirmam essa hipótese e mostram que 1998 foi o ano mais quente dos últimos 9 anos, ou seja, o aquecimento global parece ter acabado em 1998 ! 
  • As análises do período de 1947-1976 (fase fria da ODP), feitas por este autor, mostraram que, de maneira geral, as condições climáticas não foram favoráveis para o Brasil. As chuvas se reduziram em todo o País, resultando em deficiência hídrica para abastecimento de populações e geração de energia elétrica, e as Regiões Sul e Sudeste sofreram um aumento na freqüência de massas de ar polar intensas (geadas fortes) no inverno, fato que contribuiu decisivamente para a erradicação do cultivo do café no Paraná.. 
A região brasileira mais afetada parece estar compreendida por partes do Sudeste do Pará, Norte de Tocantins, Sul do Maranhão e Piauí, a região sudeste da Amazônia, que é a fronteira agrícola, de expansão da soja e de futuros canaviais. Essa região poderá apresentar uma redução média de até 500 mm, cerca de 25 %, em seus totais pluviométricos nos próximos 15 a 20 anos.
  • Reflexões sobre o propagado aquecimento global deixam evidente que o clima do Planeta, sem exagero, é resultante de tudo o que ocorre no Universo. Exemplificando, se a poeira densa, de uma estrela, que explodiu há 15 milhões de anos, adentrasse o Sistema Solar, diminuiria a radiação solar incidente e resfriaria o Planeta! 
O fato de o aquecimento, observado entre 1977-1998, muito provavelmente ter sido causado pela variabilidade natural do clima, não é um aval para o Homem continuar a degradar o meio-ambiente. 
  • Ao contrário, considerando que o aumento populacional é inevitável num futuro próximo, o bom senso sugere a adoção de políticas de conservação ambiental bem elaboradas, destituídas de dogmatismo, e mudanças nos hábitos de consumo para que a Humanidade possa sobreviver, isto é, para que as gerações futuras possam dispor dos recursos naturais que se dispõem atualmente. Portanto, a conservação ambiental é necessária e independente do aquecimento ou resfriamento global.
Referências Bibliográficas:

Beck, E.G., 2007. 180 Years of CO2 gas analysis by chemical methods. Energy & Environment, pp. 1-17. Caillon, N. et al., 2003. Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science, Vol. 299, pp. 1728-1731.
Christy.J ; Spencer R., 2003. Global Temperature Report 1978-2003, The University of Alabama in Huntsville, disponível em meteo.lcd.lu/globalwarming/Christy_and_Spencer/25years_highlite.pdf CRU/UEA, 2007. Climate Research Unit, University of East Anglia, acessível em www.cru.uea.ac.uk.
Donarummo Jr., J.; Ram, M.; Stolz, M.R., 2002. Sun/dust correlation and volcanic interference, Geophys. Res. Lett. 29 (9): 1361. ESRL/PSD/NOAA, 2006. Dados de Reanálises, Earth System Research Laboratory, Physical Sciences Division, NOAA, disponíveis em http://www.cdc.noaa.gov. Ferraz, E.S.B.; Oliveira, E. H.;
Fernandes, A D.; Bachi, M.A, 1993. Densidade da madeira e flutuações climáticas na Amazônia (Treering density and climate fluctiation in Amazon), VII Congresso Brasileiro de Agrometeorologia, SBA, July 27-30, Porto Alegre, RS, Brasil GISS/NASA, 2007.
Goddard Institute for Space Studies, NASA, acessível em http://data.giss.nasa.gov/gistemp Gregory, K., A., 2007. Critique on the Lockwood-Fröhlich paper. Disponível em http://scienceandpublicpolicy.org, acessado em 10/09/2007.
Hakkinen, S.; Rhines, P.B., 2004. Decline of subpolar North Atlantic circulation during the 1990s, Science, 304, 555-559.
Hieb M.; Hieb H., 2006. Water vapor rules the greenhouse system. Disponível em http://mysite.verizon.net/mhieb/WVFossils/greenhouse data.html, acessado em 06/08/2007. IPCC AR4/SPM, 2007. Contribution of Working Group I for the Fourth Assessment Report (AR4), Summary for Policy Makers (SPM), WMO/UNEP, Genebra, Suiça.
Jaworowski, Z., 2007. CO2: The greatest scientific scandal of our times. EIR Science, March 16, pp. 38-53. Lamb, H.H, 1972. Climate: Present, Past and Future, Vol. 1, Methuen & Co. Ltd., London, UK, 613 p. Lockwood, M.; Fröhlich, C., 2007.
Recent oppositely direct trends in solar climate forcing and global mean surface air temperature, Proceedings of Royal Society A, p:1-14
Minnis, P.; Harrison, E.F.; Stowe, L.L.; Gibson, G.G.; Denn, F.M.; Doelling, D.R.; Smith Jr, W.L., 1993. Radiative climate forcing by Mount Pinatubo eruption, Science 259:1411-1415.
Mitchel, J.F.B.; Senior, C.A.; Ingran, W.J., 1989. CO2 and climate: a missing feedback? Nature 341:132-134. Molion, L.C.B. (1988). A Amazônia e o clima da terra. Revista Ciência Hoje, v.8, n.48, p.42-46. Molion, L.C.B., 1995. Global warming: a critical review. Revista Geofísica 43 (2):77-86, Instituto PanAmericano de Geografia e Historia, Mexico, DF
Molion, LCB., 2005. Aquecimento global, El Niños, manchas solares, vulcões e Oscilação Decadal do Pacífico. Climanálise 8 (agosto), disponível em http://www6.cptec.inpe.br/revclima/revista
Molion, L.C.B., 2006. Variabilidade e forçantes climáticas, Anais do XIV Congresso Brasileiro de Meteorologia, SBMET, 27 a 4 de dezembro, Florianópolis (SC).
Petit J.R., et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica, Nature.
Ren, G. Y.; Chu, Z. Y.; Chen, Z. H.; Ren, Y. Y. , 2007. Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations, Geophys. Res. Lett., 34, L05711, doi:10.1029/2006GL027927.
Shaviv, N.J. Cosmic ray diffusion from galactic spiral arms, iron meteorites, and a possible climatic connection, Phys. Rev. Letters, 89, 51-102, 2002
Spencer, R.W; Braswell, W.D.; Christy, J.R.; Hnilo, J., 2007. Cloud and radiation budget changes associated with tropical intraseasonal oscillations.
Geophys. Res. Lett., Vol34, L15707, doi: 10.1029/2007GL029698. Svensmark, H., 1998. Influence of cosmic rays on Earth’s climate, Phys. Rev. Letters 81(22):5027-5030.

Aquecimento Global: Uma visão crítica