quarta-feira, 30 de abril de 2014

Biodiesel - (Mono-alquil Ésteres)

Biodiesel utiliza como matéria-prima principal a soja (81,2%), sebo bovino (13,4%)
e outras fontes (5,4%). 

  • Biodiesel refere-se ao combustível formado por ésteres de ácidos graxos, ésteres alquila (metila, etila ou propila) de ácidos carboxílicos de cadeia longa. 
É um combustível renovável e biodegradável, obtido comumente a partir da reação química de lipídios, óleos ou gorduras, de origem animal (e.g., sebo) ou vegetal, com um álcool na presença de um catalisador (reação conhecida como transesterificação). Pode ser obtido também pelos processos de craqueamento e esterificação.
  • O biodiesel é feito para ser usado em motores diesel padrão e, portanto, distinto dos óleos vegetais e resíduos usado para motores a combustível diesel convertidos e substitui total ou parcialmente o óleo diesel de petróleo em motores ciclo diesel de caminhões, tratores, camionetes, automóveis, etc., ou estacionários (geradores de eletricidade, calor, etc). Pode ser usado puro ou misturado ao diesel em diversas proporções. O biodiesel pode ser usado sozinho ou misturado com o petrodiesel (combustível diesel derivado de petróleo). O termo "biodiesel" é padronizado como mono-alquil ésteres nos Estados Unidos.
O nome biodiesel muitas vezes é confundido com a mistura diesel+biodiesel, disponível em alguns postos de combustível. A designação correta para a mistura vendida nestes postos deve ser precedida pela letra B (do inglês Blend). Neste caso, a mistura de 2% de biodiesel ao diesel de petróleo é chamada de B2 e assim sucessivamente, até o biodiesel puro, denominado B100.

Modelo espacial da molécula de estearato de etila, ou éster de etila do ácido esteárico, um éster de etila produzido do óleo de soja ou canola e etanol

Misturas:

Misturas (composições) de biodiesel e combustível diesel convencional à base de hidrocarbonetos são os produtos mais comummente distribuídos para uso no mercado de varejo de combustível diesel. Grande parte do mundo usa um sistema conhecido como o "fator" B "para indicar a quantidade de biodiesel em qualquer mistura de combustível: 
  • Biodiesel a 100% é referido como B100 
  • Biodiesel a 20% é rotulado B20 
  • Biodiesel a 5% é rotulado B5 
  • Biodiesel a 2% é rotulado B2
Obviamente, quanto maior o percentual de biodiesel, mais ecologicamente amigável é o combustível. É comum nos E.U.A. ver-se o rótulo B99.9 porque um crédito de imposto federal será concedido à primeira entidade que componha óleo diesel com biodiesel puro. Misturas de 20 por cento de biodiesel com 80 por cento de diesel de petróleo (B20) podem geralmente ser usadas em motores diesel sem modificações. O biodiesel pode também ser utilizado em sua forma pura (B100), mas pode exigir modificações no motor para evitar certos problemas de manutenção e performance. Misturas de B100 com óleo diesel pode ser obtidas por: 
  • Mistura em tanques de fabricação e estocagem em ponto próximo antes da entrega por caminhões-tanque 
  • Mistura por agitação natural no caminhão-tanque (adicionando percentagens específicas de biodiesel e diesel de petróleo) 
  • Na linha de mistura, duas componentes chegam ao caminhão-tanque simultaneamente. 
  • Mistura por bombas doseadoras, em que medidas de óleo diesel e biodiesel estão definidas para o volume total, com a bomba puxando a transferência de dois pontos e completando a mistura na saída da bomba. 
Rio de Janeiro (2014) - Os produtores de biodiesel conseguiram transferir para as distribuidoras de combustíveis 485,6 milhões de litros do produto nos dois dias do 34º Leilão de Biodiesel, promovido desde quarta-feira pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). No total, foram ofertados pelos produtores 588,7 milhões de litros.

As vantagens do biodiesel:
  • É energia renovável. As terras cultiváveis podem produzir uma enorme variedade de plantas oleaginosas como fonte de matéria-prima para o biodiesel. 
É constituído por carbono neutro, ou seja, o combustível tem origem renovável ao invés da fóssil. Desta forma, sua obtenção e queima não contribuem para o aumento das emissões de CO2 na atmosfera, zerando assim o balanço de massa entre emissão de gases dos veículos e absorção dos mesmos pelas plantas. 
  • Possui um alto ponto de fulgor, conferindo ao biodiesel manuseio e armazenamento mais seguros. 
Apresenta excelente lubricidade, fato que vem ganhando importância com o advento do petrodiesel de baixo teor de enxofre, cuja lubricidade é parcialmente perdida durante o processo de produção. 
Contribui para a geração de empregos no setor primário. Com isso, evita o êxodo do trabalhador no campo, reduzindo o inchaço das grandes cidades e favorecendo o ciclo da economia autossustentável essencial para a autonomia do país. 
  • Com a incidência de petróleo em poços cada vez mais profundos, muito dinheiro esta sendo gasto na sua prospecção e extração, o que torna cada vez mais onerosa a exploração e refino das riquezas naturais do subsolo, havendo então a necessidade de se explorar os recursos da superfície, abrindo assim um novo nicho de mercado, e uma nova oportunidade de uma aposta estratégica no sector primário. 
Nenhuma modificação nos atuais motores do tipo ciclo diesel faz-se necessária para misturas de biodiesel com diesel de até 20%, sendo que percentuais acima de 20% requerem avaliações mais elaboradas do desempenho do motor.

Desvantagens na utilização do biodiesel:
  • Não se sabe ao certo como o mercado irá assimilar a grande quantidade de glicerina obtida como subproduto da produção do biodiesel (entre 5 e 10% do produto bruto). A queima parcial da glicerina gera acroleína, produto suspeito de ser cancerígeno. 
No Brasil e na Ásia, lavouras de soja e dendê, cujos óleos são fontes potencialmente importantes de biodiesel, estão invadindo florestas tropicais que são importantes bolsões de biodiversidade. Muitas espécies poderão deixar de existir em consequência do avanço das áreas agrícolas, entre as espécies, podemos citar o orangotango ou o rinoceronte-de-sumatra. Embora no Brasil, muitas lavouras não serem ainda utilizadas para a produção de biodiesel, essa preocupação deve ser considerada. Tais efeitos nocivos poderão ser combatidos pela efetivação do zoneamento agro-ecológico proposto pelo Governo Federal. 
  • A produção intensiva da matéria-prima de origem vegetal leva a um esgotamento das capacidades do solo, o que pode ocasionar a destruição da fauna e flora, aumentando portanto o risco de erradicação de espécies e o possível aparecimento de novos parasitas, como o parasita causador da Malária. 
O balanço de CO2 do biodiesel não é neutro, mesmo sendo inúmeras vezes menos emissor de CO2 que o diesel de petróleo, se for levado em conta a energia necessária à sua produção, mesmo que as plantas busquem o carbono à atmosfera: é preciso ter em conta a energia necessária para a produção de adubos, para a locomoção das máquinas agrícolas, para a irrigação, para o armazenamento e transporte dos produtos. 
  • Cogita-se a que poderá haver uma subida nos preços dos alimentos, ocasionada pelo aumento da demanda de matéria-prima para a produção de biodiesel. Como exemplo, pode-se citar alguns fatos ocorridos em Portugal, no início de Julho de 2007, quando o milho era vendido a 200 euros por tonelada (152 em Julho de 2006), a cevada a 187 (contra 127), o trigo a 202 (137 em Julho de 2006) e o bagaço de soja a 234 (contra 178). 
O uso de algas como fonte de matéria-prima para a produção do biodiesel poderia poupar as terras férteis e a água doce destinadas à produção de alimentos. 

Aplicações:
  • O biodiesel pode ser usado na forma pura (B100) ou pode ser misturado ao diesel de petróleo em qualquer concentração, na maioria das bombas de injeção de motores diesel. 
Novos extremos de alta pressão (29.000 psi) de motores ferroviários comuns tem limites estritos de fábrica a B5 ou B20, dependendo do fabricante. Biodiesel tem propriedades solventes diferentes do petrodiesel, e irá degradar juntas e mangueiras de borracha natural em veículos (principalmente os veículos fabricados antes de 1992), embora estes tendam a desgastar-se, naturalmente, e provavelmente já terem sido substituídos com o elastômero FKM, que é não reativo para biodiesel. 
  • Biodiesel tem sido conhecido para quebrar os depósitos de resíduos nas linhas de combustível, onde tem sido utilizada petrodiesel. Como resultado, filtros de combustível pode ficar entupidos com partículas se uma rápida transição para o biodiesel puro é feita. Portanto, é recomendável mudar os filtros de combustível em motores e geradores de calor logo após a primeira mudança para uma mistura do biodiesel.
Tem havido o desenvolvimento de componentes polímeros e elastômeros, incluindo mangueiras, conexões e juntas, de formulações resistentes a diversos biocombustíveis, incluindo biodiesel.
  • São estudados e fomentados também o uso extensivo de biodiesel em embarcações, desde barcos recreativos até como aditivo em embarcações de grande porte.

Distribuição:
  • Desde a promulgação Ato da Política de Energia de 2005, o uso do biodiesel tem aumentado nos Estados Unidos. Na Europa, o Obrigação de Combustível Renovável de Transporte obriga os fornecedores a incluir 5% de combustíveis renováveis em todos os combustíveis para transportes vendidos na UE até 2010. Para combustível diesel rodoviário, isso significa efetivamente 5% de biodiesel.
Aceitação para uso pelos fabricantes de veículos:
  • Em 2005, a Chrysler (então parte da Daimler Chrysler) lançou o Jeep Liberty CRD a diesel para o mercado americano, com misturas de 5% de biodiesel, indicando pelo menos parcial aceitação do biodiesel como um aditivo aceitável para combustível diesel. Em 2007, a Daimler Chrysler indicou a intenção de aumentar a cobertura da garantia de qualidade para misturas de biodiesel a 20% se a qualidade de biocombustíveis nos Estados Unidos puder ser padronizada.
A partir de 2004, a cidade de Halifax, Nova Escócia decidiu atualizar o seu sistema de ônibus para permitir que a frota de ônibus da cidade fosse ser movida inteiramente por um biodiesel baseado em óleo de peixe. Isso fez com a cidade considerar algumas questões mecânicas iniciais, mas depois de vários anos de aperfeiçoamentos, a frota inteira tivesse sido convertida com sucesso.
  • Em 2007, a McDonalds do Reino Unido anunciou que iria começar a produzir biodiesel a partir do óleo residual de frituras, subproduto dos seus restaurantes. Este combustível seria usado para abastecer sua frota.
Uso ferroviário:
  • A companhia Train Operating Company Virgin Trains britânica alegou ter o primeiro funcionamento de trem do mundo a biodiesel, que foi convertido para rodar com 80% petrodiesel e apenas 20% de biodiesel, e afirma-se que vai economizar 14% em emissões diretas.
O Royal Train completou em 15 de setembro de 2007 sua primeira viagem sempre funcionando com 100% de biodiesel fornecido pela Green Fuels Ltda. Sua Alteza Real, o Príncipe de Gales, e o diretor da Green Fuels, James Hygate, foram os primeiros passageiros em um trem alimentado inteiramente com combustível biodiesel. Desde 2007 o Royal Train tem operado com êxito em B100 (100% de biodiesel).
  • Da mesma forma, a linha ferroviária curta estatal em Eastern Washington executou um teste de uma mistura de biodiesel a 25%/petrodiesel a 75% durante o verão de 2008, com aquisição de combustível a partir de um produtor de biodiesel situado ao longo da ferrovia. O trem será movido por biodiesel produzido, em parte, de canola cultivada em regiões agrícolas através do qual a linha circula.
Também em 2007 a Disneyland começou a fazer rodar os trens do parque em misturas de biodiesel B98 (98% biodiesel). O programa foi interrompido em 2008 devido a problemas de armazenamento, mas em janeiro de 2009 foi anunciado que o parque teria, então, todos os trens rodando com biodiesel fabricado a partir de seus próprios óleos alimentares usados, sendo uma alteração dos trens movido por biodiesel à base de óleo de soja.

Uso aeronáutico:
  • Um vôo de teste foi realizado por um avião a jato tcheco completamente movido por biodiesel.
Como um óleo para aquecimento:
  • Biodiesel pode também ser usado como combustível em caldeiras de aquecimento doméstico (calefação) e comercial, uma mistura de óleo para aquecimento e biocombustível que é padronizada e tributados de forma ligeiramente diferente do combustível para motores diesel utilizado para o transporte. 
Às vezes, é conhecido como "bioheat", sendo que este nome é uma marca registada da National Biodiesel Board (NBB) e o National Oilheat Research Alliance (NORA) nos E.U.A. e e Columbia Fuels, no Canadá. Biodiesel para aquecimento está disponível em várias misturas, até 20% de biocombustível é considerado aceitável para uso nas fornalhas existentes, sem modificações.
  • Antigos queimadores podem conter componentes de borracha que seriam afetados pelas propriedades solventes do biodiesel, mas caso contrário podem queimar biodiesel sem qualquer conversão necessária. 
Cuidados devem ser tomados em primeiro lugar, no entanto, dado que resinas residuais deixados por petrodiesel serão liberadas e podem obstruir as tubulações de combustível e a substituição do filtro de filtragem rápida é necessária. Outra abordagem é começar a utilizar biodiesel em mistura, e diminuindo a proporção de petróleo ao longo do tempo pode permitir que as resinas saiam de forma mais gradual e com menos probabilidade de causar entupimento. 
  • Graças às suas fortes propriedades solventes, no entanto, o queimador é limpo e geralmente se torna mais eficiente. Pesquisas técnicas descrevem testes em laboratório e campo projetos com biodiesel puro e misturas de biodiesel como combustível para aquecimento de caldeiras de óleo. 
Durante a Biodiesel Expo 2006, no Reino Unido, Andrew J. Robertson apresentou sua pesquisa sobre biodiesel como óleo de aquecimento em artigo técnico e sugeriu que o biodiesel B20 pode reduzir as emissões de CO2 casa do Reino Unido em 1,5 milhão de toneladas por ano.
  • Uma lei aprovada em Massachusetts pelo governador Deval Patrick exige que todos os aquecimentos domésticos a diesel nesse estado passem a ser abastecidos com biocombustíveis de 2% até 01 de julho de 2010, e 5% de biocombustíveis até 2013.
História:
  • A transesterificação de um óleo vegetal foi realizado primeiramente em 1853 pelos cientista Patrick Duffy, muitos anos antes do primeiro motor diesel tornar-se funcional.O primeiro modelo de Rudolf Diesel, um único cilindro de ferro de 3 m com um volante em sua base, funcionou pela primeira vez em Augsburg, Alemanha, em 10 de agosto de 1893, sendo abastecido com nada além de óleo de amendoim. Em memória deste evento, algumas fontes citam o dia 10 de agosto como o "Dia Internacional de Biodiesel".
É freqüentemente relatado que o Diesel projetou seu motor para funcionar com óleo de amendoim, mas este não é o caso. Diesel afirmou em seus artigos publicados, "na Exposição de Paris em 1900 (Exposition Universelle) que foi mostrado pela Companhia Otto um pequeno motor diesel, que, a pedido do governo francês funcionou com óleo de amendoim arachide, e trabalhou de forma tão suave que somente poucas pessoas tinham conhecimento disto. O motor foi construído para uso de óleo mineral, e foi posteriormente, operado com óleo vegetal, sem qualquer alteração a ser feita. 
  • O governo francês, no momento com o pensamento de testar a aplicabilidade para a produção de energia do arachide, ou castanha-da-terra, que cresce em quantidades consideráveis em então colônias africanas, e podia ser facilmente cultivado lá." Diesel mais tarde, realizou testes relacionados e parecia favorável à ideia. Em 1912 Diesel disse em discurso que "o uso de óleos vegetais para combustíveis de motores pode parecer insignificante hoje, mas tais óleos podem tornar-se produtos, no decorrer do tempo, tão importantes como o petróleo e o alcatrão de hulha na atualidade."
Apesar do uso generalizado de combustível diesel derivados de petróleo fóssil, o interesse em óleos vegetais como combustível para motores de combustão interna foi relatado em vários países durante os anos 1920 e 1930 e, posteriormente, durante a Segunda Guerra Mundial. Bélgica, França, Itália, Reino Unido, Portugal, Alemanha, Brasil, Argentina, Japão e China foram relatados como tendo testado e utilizado óleos vegetais como combustível para motores diesel durante este período. 
  • Alguns problemas operacionais foram relatados devido à alta viscosidade dos óleos vegetais em comparação ao diesel de petróleo, o que resulta em baixa atomização do combustível no pulverizador de combustível e muitas vezes leva a depósitos e carbonização dos injetores, câmara de combustão e válvulas. As tentativas para superar esses problemas incluiram aquecimento do óleo vegetal, misturando-o com combustível diesel derivado do petróleo ou etanol, a pirólise e raqueamento dos óleos.
Em 32 de agosto de 1937, G. Chavanne da Universidade de Bruxelas (Bélgica) teve concedida uma patente para um "Procedimento para a transformação de óleos vegetais para seu uso como combustíveis" (em francês "Procédé de Transformation d’Huiles Végétales en Vue de Leur Utilisation comme Carburants") Patente Belga 422.877. Esta patente descrive a alcoólise (frequentemente citada como transesterificação) de óleos vegetais usando etanol (e menciona metanol) de maneira a separar os ácidos graxos do glicerol e substituir o glicerol com álcoois lineares de cadeia curta. Esta parece ser a primeira citação do que é conhecido hoje como "biodiesel".
  • Mais recentemente, em 1977, o cientista brasileiro Expedito Parente inventou e submeteu para patente o primeiro processo industrial para a produção de biodiesel. Este processo é classificado como biodiesel pelas normas internacionais, apresentando uma "identidade e qualidade padronizada. Nenhum outro biocombustível proposto tem sido validade para a indústria automobilística.". Atualmente, a empresa de Parente, Tecbio, está trabalhando com a Boeing e a NASA para certificar bioquerosene (bio-kerosene), outro produto produzido e patenteado pelo cientista brasileiro.
A pesquisa sobre o uso do óleo de girassol transesterificado, e refinando-o aos padrões de óleo diesel, foi iniciada na África do Sul em 1979. Por volta de 1983, o processo para a produção de biodiesel com qualidade de combustível testado em motores foi completado e publicado internacionalmente. Uma empresa austríaca, Gaskoks, obteve as tecnológica do grupo South African Agricultural Engineers (Engenheiros Agrícolas Sul Africanos); a empresa construiu a primeira planta piloto de biodiesel em novembro de 1987, e a primeira planta de escala industrial em abril de 1989 (com uma capacidade de 30 mil toneladas de sementes de colza por ano).
  • Ao longo da década de 1990, plantas foram abertas em muitos países europeus, incluindo a República Tcheca, Alemanha e Suécia. A França lançou a produção local de biodiesel (conhecido como diéster) de óleo de semente de colza, que é misturado no combustível diesel regular ao nível de 5%, e para o óleo diesel utilizado por algumas frotas cativas (por exemplo, transporte público) a um nível de 30%. A Renault, a Peugeot e outros fabricantes possuem motores de caminhões certificados para uso com até esse nível parcial de biodiesel; estão em andamento experimentos com biodiesel de 50%. 
Durante o mesmo período, os países em outras partes do mundo também viram a produção local de biodiesel crescer: em 1998, o Austrian Biofuels Institute identificou 21 países com projetos comerciais de biodiesel. Biodiesel a 100% já está disponível em muitas estações de serviço normal em toda a Europa.
  • Em setembro de 2005, Minnesota tornou-se o primeiro estado EUA a decidir que todo o óleo diesel vendido no estado deveria conter parcialmente biodiesel, exigindo um teor de, pelo menos, 2%.
  • Em 2008, a ASTM publicou seus novos Padrões de Especificações de Mistura de Biodiesel (Biodiesel Blend Specifications Standards).
Propriedades:
  • Biodiesel tem propriedades lubrificantes melhores e muito mais alto número de cetano que os atuais combustíveis diesel de mais baixo teor de enxofre. Além do biodiesel reduzir o desgaste do sistema de combustível, e em níveis baixos em sistemas de alta pressão aumenta a vida útil do equipamento de injeção de combustível que depende do combustível para a sua lubrificação. Dependendo do motor, isso pode incluir a bombas de injeção de alta pressão, bomba injetoras (também chamado injetores de unidade) e injetores de combustível.
O poder calorífico do biodiesel é de cerca de 37,27 MJ/L. Esta é 9% inferior ao óleo diesel derivado de petróleo classificado como Número 2. Variações na densidade de energia do biodiesel são mais dependentes da matéria-prima utilizada no processo de produção. Ainda sim estas variações são menores do que o petrodiesel. Foi alegado que biodiesel permite melhor lubrificação e uma combustão mais completa, aumentando assim a produção de energia do motor e atua compensando a maior densidade de energia de petrodiesel.
  • Biodiesel é um líquido que varia de cor - entre dourado e castanho escuro - dependendo da matéria-prima de produção. É imiscível com água, tem um alto ponto de ebulição e baixa pressão de vapor. *O ponto de inflamação de biodiesel (> 130 °C,> 266 °F) é significativamente mais alto que o do diesel de petróleo (64 °C, 147 °F) ou gasolina (-45 °C, -52 °F). Biodiesel tem uma densidade de ~0,88 g/cm³, menor do que a da água.
Biodiesel tem praticamente nenhum conteúdo de enxofre, e é frequentemente utilizado como aditivo para óleo diesel com ultrabaixo teor de enxofre (Ultra-Low Sulfur Diesel, ULSD) de combustível, porque confere a este, melhores características de lubricidade, sendo apontado como uma excelente alternativa o uso dos ésteres em adição de na taxa de 5 a 8% buscando reconstituir essa lubricidade.Também é essencialmente isento de compostos aromáticos.

Compatibilidade de materiais:
  • Plásticos: polietileno de alta densidade (high density polyethylene, HDPE) é compatível, mas cloreto de polivinila (PVC) é lentamente degradado. Poliestirenos são dissolvidos em contacto com o biodiesel, tanto que pesquisa-se a dissolução de resíduos de poliestireno como forma de aumentar o rendimento energético do biodiesel.
Metais: o biodiesel tem um efeito sobre os materiais à base de cobre (por exemplo, bronze), e também afeta zinco, estanho, chumbo e ferro fundido. Os aços inoxidáveis (316 e 304) e ligas de alumínio não são afetados.
  • Borracha: Biodiesel também afeta os tipos de borrachas naturais encontrados em alguns componentes de motores mais antigos. Estudos também descobriram que elastômeros fluorados (FKM) curados com peróxidos e óxidos de metais alcalinos pode ser degradado quando perde biodiesel sua estabilidade causada pela oxidação. No entanto os testes com FKM-GBL-S e FKM GF-S apontaram serem estes elastômeros mais resistentes para lidarem com biodiesel em todas as condições.
Padrões técnicos:
  • Biodiesel tem uma série de normas para a sua qualidade, incluindo a norma europeia EN 14214 e a ASTM D6751, padrão utilizado nos E.U.A. e Canadá, entre outras.
Gelificação:
  • Quando biodiesel é resfriado abaixo de um certo ponto, algumas moléculas agregam-se e formam cristais. 
O combustível começa a apresentar-se muito turvo, a medida que os cristais se tornam maiores do que um quarto do comprimento de onda da luz visível - este é o ponto de névoa ou ponto de turbidez. A medida que o combustível continua sendo resfriado, esses cristais se tornam ainda maiores. 
  • A menor temperatura na qual o combustível pode passar por um filtro de 45 mícron é o ponto de entupimento de filtro a frio (cold filter plugging point , CFPP). A medida que o biodiesel seja ainda mais resfriado pode se gelificar e por fim, solidificar. Na Europa, existem diferenças nas exigências de CFPP entre os países. Isto reflete-se nas normas nacionais diferentes desses países. 
A temperatura na qual biodiesel puro (B100) começa a gelificar, varia significativamente e depende da mistura de ésteres e, portanto, do óleo como matéria-prima usado para produzir o biodiesel. Por exemplo, o biodiesel produzido a partir de baixo ácido erúcico de variedades de sementes de canola (RME) começa a gelificar a aproximadamente -10 °C (14 °F). 
  • Biodiesel produzido a partir de sebo tende a gelificar a cerca de 16 °C (61 °F). Há uma série de aditivos comercialmente disponíveis, que irão diminuir significativamente o ponto de fluidez e o ponto de entupimento de filtro a frio de biodiesel puro. Operação no inverno é também possível através de mistura de biodiesel com óleos combustíveis, incluindo combustível diesel de baixa enxofre n° 2 e diesel nº 1/querosene.
Contaminação por água:
  • Biodiesel pode conter pequenas mas problemáticas quantidades de água. Embora não seja miscível com água, sendo hidrofóbico, é, como o etanol, higroscópico (absorve água da umidade atmosférico). Uma das razões pelas quais o biodiesel pode absorver a água é a persistência de mono e diglicerídeos que sobraram de uma reação incompleta na sua produção. 
Estas moléculas podem agir como um emulsificante, permitindo que a água se misture com o biodiesel. Além disso, pode haver água que é residual ao processamento ou resultante de condensação no tanque de armazenamento. A presença de água é um problema porque:
  • Água reduz o calor de combustão do combustível como um todo. Isto significa mais fumaça, partida mais difícil, menos potência. 
  • Água provoca corrosão dos componentes vitais do sistema de combustível: bombas de combustível, bombas injetoras, linhas de combustível, etc. 
  • Água e micróbios causam falha nos elemento filtrantes de papel no sistema (por apodrecimento), que por sua vez, resulta na falha prematura da bomba de combustível devido à ingestão de partículas grandes. 
  • Água congela formando cristais de gelo perto de 0 °C (32 °F). Estes cristais fornecem locais para nucleação e aceleraram a gelificação do combustível residual. 
  • A água acelera o crescimento de colônias de microrganismos, os quais podem entupir um sistema de combustível. Usuários de biodiesel que têm tanques de combustível aquecido, portanto, enfrentam problemas com micróbios o ano inteiro. 
  • Adicionalmente, a água pode causar corrosão nos pistões de um motor diesel. 
Anteriormente, a quantidade de água contaminando o biodiesel era sido difícil de avaliar por amostragem, uma vez que água e óleo separam-se. No entanto, é agora possível medir o teor de água com de sensores de água em óleo. 
  • A determinação do teor de água em biodiesel é realizada entre outros métodos possíveis principalmente por titulação Karl Fischer segundo a norma EN ISO 12 937. A titulação Karl Fischer é predominantemente o método escolhido quando vestígios de água livre, emulsionada ou dissolvida tem que ser determinados com precisão em um tempo razoável. 
É baseada na reação estequiométrica de água com iodo e dióxido de enxofre na presença de um álcool de cadeia curta e uma base orgânica (uma amina). Entre os vários métodos para a determinação da água incluem-se: a perda por secagem, a reação com hidreto de cálcio, espectroscopia de infravermelho por transformada de Fourier (FTIR), espectroscopia Raman e de medidas dielétricas. O método centrífugo é o descrito pela ASTM D 1796, de 1997, e presta-se também para a determinação de sedimentos.
  • A contaminação por água também é um potencial problema quando se utiliza determinado produtos químicos catalisadores envolvidos no processo de produção, reduzindo substancialmente a eficiência catalítica de catalisadores básicos (pH elevado) tais como hidróxido de potássio. 
No entanto, a metodologia de produção super-crítica do metanol, em que o processo de transesterificação de óleo e metanol como matéria-prima é efetuada sob a alta temperatura e pressão, demonstrando ser pouco afetada pela presença de contaminação da água durante a fase de produção.

Disponibilidade e preços:
  • A produção de biodiesel global atingiu 3,8 a 3,9 milhões de toneladas em 2005. Aproximadamente 85% da produção de biodiesel vem da União Europeia. William Thurmond; Biodiesel 2020; The Emerging Markets -www.autofocusasia.com
Em 2007, nos Estados Unidos, a média de preços no varejo ("na bomba"), incluindo os impostos sobre os combustíveis federais e estaduais, de B2/B5 foram inferiores ao diesel de petróleo em cerca de 12 centavos, e misturas B20 foram as mesmas que o petrodiesel. 
  • No entanto, como parte de uma mudança dramática nos preços do óleo diesel em relação ao ano anterior, até julho de 2009, o US DOE estava reportando os custos médios de B20 15 centavos de dólar mais alto por galão do que o diesel de petróleo (US$ 2,69/gal contra US$ 2,54/gal). B99 e B100 geralmente custam mais do petrodiesel, exceto quando os governos locais fornecem uma subvenção.
Produção:
Processo de fabricação:
  • O biodiesel é comumente produzido pela transesterificação de óleo vegetal ou gordura animal como matéria-prima. Existem vários métodos para realizar esta reação de transesterificação, incluindo o processo em batelada comum, os processos supercríticos, o uso de reatores compartimentados oscilatórios os métodos de ultra-som, e até mesmo métodos com microondas.
A reação de transesterificação:
  • O biodiesel é comumente produzido por meio de uma reação química denominada transesterificação. No caso específico para a reação abaixo, os triacilglicerois de origem animal, reagem com o metanol, na presença de um catalisador, produzindo glicerol(subproduto) e o éster metílico de ácido graxo (biodiesel, conhecido pelo acrônico em inglês FAME - fatty acid methyl éster). 
A reação de transesterificação pode ser catalisada por ácido ou base.


Composição química:
  • Quimicamente, o biodiesel transesterificado compreende uma mistura de ésteres mono-alquila de ácidos graxos de cadeia longa. 
A forma mais comum utiliza metanol (convertido para metóxido de sódio) para produzir biodiesel de ésteres metila (vulgarmente designado por éster metila de ácido graxo, em inglês Fatty Acid Methyl Ester - FAME), como é o álcool mais barato disponível, embora etanol possa ser usado para produzir ésteres etílicos (comumente referido como éster etila de ácido graxo, Fatty Acid Ethyl Ester - FAEE), e álcoois superiores, como isopropanol e butanol também tenham sido utilizados. Usar álcoois de alto peso molecular melhora as propriedades fluidas a frio do éster resultante, à custa de uma reação de transesterificação menos eficiente. Um processo de produção por transesterificação lipídica é usado para converter o óleo básico para os ésteres desejados. 
  • Quaisquer ácidos graxos livres (em inglês free fatty acids FFAs) no óleo básico ou são convertidos em sabão e retirados do processo, ou eles são esterificados (rendendo mais biodiesel), utilizando um catalisador ácido. Após essa transformação, ao contrário de óleo vegetal diretamente usado como combustível,o biodiesel tem propriedades de combustão muito semelhantes às do óleo diesel de petróleo, podendo substituí-lo nos usos mais correntes.
Separação dos ésteres do glicerol:
  • Após a reação de transesterificação, os ésteres resultantes devem ser separados da glicerol, dos reagentes em excesso e do catalisador da reação. Isto pode ser feito em 2 passos.
Primeiro, separa-se a glicerol via decantação ou centrifugação. Seguidamente eliminam-se os sabões, restos de catalisador e de metanol/etanol por um processo de lavagem com água e borbulhação ou utilização de silicato de magnésio, requerendo este último uma filtragem, ou por destilação, que dispensa o uso de produtos químicos para promover a purificação.

O glicerol como subproduto:
  • Um subproduto do processo de transesterificação é a produção de glicerol (glicerina). Para cada 1 tonelada de biodiesel que é fabricado, 100 kg de glicerol são produzidos. Originalmente, havia um mercado valioso para a glicerol, que ajudou a economia do processo como um todo. 
No entanto, com o aumento da produção global de biodiesel, o preço de mercado para o glicerol bruto (contendo 20% de água e de resíduos de catalisador), caiu. Pesquisas estão sendo conduzida em nível global para usar esse glicerol como um componente químico. Uma iniciativa no Reino Unido é o The Glycerol Challenge ("o desafio do glicerol").
  • Normalmente, este glicerol bruto tem sido purificado, tipicamente através de destilação a vácuo. Isto é bastante intensivo energeticamente. O glicerol refinado (acima de 98% de pureza) pode então ser utilizado diretamente, ou convertido em outros produtos. Os seguintes anúncios foram feitos em 2007: uma joint venture da Ashland Inc. e Cargill anunciou planos para fazer propilenoglicol na Europa a partir de glicerol e a Dow Chemical anunciou planos semelhantes para a América do Norte. 
A Dow também planeja construir uma fábrica na China pera produzir epicloridrina de glicerol. Epicloridrina é uma matéria-prima para resinas epóxi.

Níveis de produção:
  • Em 2007, a capacidade de produção de biodiesel cresceu rapidamente, com uma taxa de crescimento média anual no período 2002-06 de mais de 40%. 
Para o ano de 2006, o último em que os números reais de produção podem ser obtidos, a produção de biodiesel total mundial foi de cerca de 5-6 milhões de toneladas, com 4,9 milhões de toneladas processados na Europa (dos quais 2,7 milhões de toneladas foi da Alemanha) e a maioria do resto da E.U.A.. Em julho de 2009, o dever foi adicionado ao biodiesel importado americano na União Europeia, a fim de equilibrar a concorrência de países europeus, especialmente os alemães. 
  • Em 2007, a produção só na Europa subiu para 5,7 milhões de toneladas. A capacidade para 2008 na Europa somou 16 milhões de toneladas. Isto é comparável com uma demanda total de diesel na Europa e os E.U. de cerca de 490 milhões de toneladas (147 mil milhões de galões). A produção mundial de óleo vegetal para todos os efeitos, em 2005/06 foi de cerca de 110 milhões de toneladas, com cerca de 34 milhões de toneladas tando de óleo de palma como de óleo de soja.

Produção de Biodiesel

Matérias-primas para biodiesel:
Uma variedade de óleos podem ser usados para produzir biodiesel. Estes incluem: 
  • Óleo como matéria-prima virgem; óleo de soja e colza são os mais comumente usados, o óleo de soja sozinho é responsável por cerca de noventa por cento de todos os estoques de combustível os E.U.A. Também pode ser obtido a partir de carraspique ou agrião-do-campo e jatropha e outras culturas tais como mostarda, linho, girassol, óleo de palma, coco, cânhamo etc
  • Óleo vegetal residual (em inglês waste vegetable oil, WVO); 
  • Gorduras animais incluindo sebo, banha de porco, graxa amarela, gordura de frango, e os subprodutos da produção de ácidos graxos ômega-3 a partir de óleo de peixe. 
  • Algas, que podem ser cultivadas utilizando-se resíduos, tais como esgotos e sem substituição de terras atualmente utilizadas para a produção de alimentos. 
  • Material gorduroso (escuma) gerado por estações de tratamento de esgoto. 
  • Óleo de plantas halófitas tal como a Salicornia bigelovii, que podem ser cultivadas usando água salgada nas zonas costeiras onde as culturas convencionais não pode ser cultivadas, com rendimento igual ao rendimento de grãos de soja e outras oleaginosas cultivadas com irrigação de água doce.
As gorduras animais são um subproduto da produção de carne. Apesar de não ser eficiente para a criação de animais (ou captura de peixes) apenas pela sua gordura, como subproduto agrega valor à indústria de produção animal (suínos, bovinos, aves). 
  • No entanto, produzir biodiesel com gordura animal que teria sido descartada poderia substituir uma pequena percentagem de uso de diesel de petróleo. Hoje, instalações multi-matéria-prima de biodiesel estão produzindo biodiesel de alta qualidade incluindo gordura animal com capacidade de até 105 milhões de galões por ano (aproximadamente 397 milhões de litros por ano). 
Atualmente, uma usina de 5 milhões de dólares está sendo construída nos E.U.A., com a intenção de produzir 11,4 milhões de litros (3.000.000 litros) de biodiesel a partir de alguns dos 1 bilhão de quilogramas estimados (2,2 bilhões de libras) de gordura de galinha produzidos anualmente na unidade local de produção aves de Tyson. Da mesma forma, algumas fábricas de biodiesel em pequena escala usam óleo de peixe residuais como matéria-prima. 
  • Um projeto financiado pela UE (ENERFISH) sugere que, em uma planta vietnamita para produzir biodiesel a partir de bagres (basa, também conhecido como pangasius), com uma produção de 13 toneladas/dia de biodiesel que pode ser produzido a partir de 81 toneladas de resíduos de peixe (por sua vez, resultantes de 130 toneladas de peixe). 
Este projeto utiliza o biodiesel para abastecer uma unidade de cogeração (geração combinada de calor e força, em inglês com binedheat and power, CHP) na planta de processamento de pescado, principalmente para a alimentação da planta de peixe congelado..

Quantidade de matérias primas requeridas:
  • A produção mundial atual de óleo vegetal e gordura animal não é suficiente para substituir o uso de combustíveis fósseis líquidos. 
Além disso, existem fatores limitantes para a vasta quantidade de plantio e as consequentes fertilização, uso de pesticida, e conversão de uso da terra que seriam necessários para produzir o óleo vegetal adicional. O combustível diesel estimado para transporte e óleo para aquecimento doméstico utilizado nos Estados Unidos é de cerca de 160 milhões de toneladas (350 bilhões de libras) de acordo com o Energy Information Administration (Administração de Informação em Energia) do Departamento de Energia dos EUA (DOE). 
  • Nos Estados Unidos, a produção estimada de óleo vegetal para todos os usos é de cerca de 11 milhões de toneladas (24 bilhões de libras) e a produção estimada de gordura animal é de 5,3 milhões de toneladas (12 bilhões de libras).
Se a área de terra arável de todos os E.U.A. (470 milhões de hectares, ou 1,9 milhão de quilômetros quadrados) fosse dedicada à produção de biodiesel de soja, este proveria apenas as 160 milhões de toneladas necessários (assumindo uma visão otimista de 98 galões estadunidenses/acre de biodiesel). Esta área de terra, em princípio, poderia ser reduzida significativamente com algas, se os obstáculos puderem ser superados. 
  • O DOE estima que se o combustível de algas substituisse todo o combustível de petróleo nos Estados Unidos, seriam necessário 15 mil milhas quadradas (38.849 quilômetros quadrados), que é alguns milhares de quilômetros quadrados maior do que o estado de Maryland, ou 1,3 Bélgicas, supondo-se um rendimento de 140 toneladas/hectare (15 mil galões estadunidenses/acre). 
Tendo em conta um rendimento mais realista de 36 toneladas/hectare (3.834 galões estadunidenses/acre) a área necessária é de cerca de 152 mil km quadrados, ou aproximadamente igual à do estado da Geórgia ou a Inglaterra e País de Gales somados. 
  • As vantagens das algas é que podem ser cultivadas em terras não aráveis, como desertos ou em ambientes marinhos, e os rendimentos em potencial equivalente ao petróleo são muito superiores aos das plantas.
Fontes alternativas de óleos e gorduras:
  • O biodiesel pode ser produzido a partir de qualquer fonte de ácidos graxos, porém nem todas as fontes de ácidos graxos viabilizam atualmente o processo a nível industrial. Os resíduos graxos também aparecem como matéria-prima para a produção do biodiesel. Nesse sentido, podem ser citados os óleos de frituras, as borras de refinação, a matéria graxa dos esgotos, óleos ou gorduras vegetais ou animais fora de especificação, ácidos graxos, etc.
O Brasil possui uma patente para a produção de biodiesel a partir da escuma de esgoto como matéria prima.Foi criada na cidade do Rio de Janeiro, a primeira usina para produção de biodiesel de esgoto. Algas também são uma possível fonte alternativa de óleos.


Rendimento:
  • Eficiência de produção de matérias-primas por unidade de área afeta a viabilidade de ultrapassagem na produção dos enormes níveis industriais necessários para abastecer uma percentagem significativa de veículos.
As plantas do gênero jatropha (que inclui a mamona, Ricinus communis e o pinhão-manso, Jatropha curcas) tem sido citadas como uma fonte de alto rendimento de biodiesel, mas os rendimentos são altamente dependentes das condições climáticas e de solos. 
  • As estimativas no final colocam o baixo rendimento em cerca de 200 gal EUA/acre (1,5-2 toneladas por hectare) por safra, que tem sido alcançados em climas mais favoráveis de duas ou mais colheitas por ano. São cultivadas nas Filipinas, em Mali e na Índia, são resistentes à seca, e pode dividir espaço com outras culturas comerciais, tais como café, açúcar, frutas e legumes. São adequadas para as terras semi-áridas e podem contribuir para desacelerar a desertificação, de acordo com seus defensores.
O rendimento de combustível de algas não foram ainda determinados com exatidão, mas DOE tem relatado como sendo a produção de algas 30 vezes mais rentável em energia por hectare do que as culturas da terra como a soja. Rendimentos de 36 toneladas/hectare são considerados práticas por Ami Ben-Amotz, do Instituto de Oceanografia de Haifa, que possui agricultura de algas em escala comercial há mais de 20 anos.

Argumentos de eficiência e economia:
  • Segundo um estudo realizado pelos Drs. Van Dyne e Raymer para o Tennessee Valley Authority, uma fazenda média nos E.U.A. consome combustível a uma taxa de 82 litros por hectare (8,75 gal EUA/hectare) de terra para produzir uma cultura. Todavia, as culturas médias de produção de óleo de colza, a uma taxa média de 1.029 L/ha (110 gal EUA/acre), e os campos de colza com elevado rendimento produzem cerca de 1.356 L/ha (145 gal EUA/acre). 
A razão entre entrada e saída nesses casos é de aproximadamente 1:12,5 e 1:16,5. A fotossíntese é conhecida por ter um taxa de eficiência de cerca de 3-6% da radiação solar total e se toda a massa de uma cultura é utilizada para produção de energia, a eficiência global da cadeia é atualmente cerca de 1%. 
  • Embora isso possa ser comparado desfavoravelmente a células solares combinadas com um trem de acionamento elétrico, o biodiesel é menos oneroso para implantar (células solares custam aproximadamente US$ 1.000 por metro quadrado) e transportes (veículos elétricos requerem baterias que atualmente têm um muito menor densidade de energia que combustíveis líquidos).
No entanto, estas estatísticas por si só não são suficientes para demonstrar se essa alteração faz sentido econômico. Outros fatores devem ser levados em consideração, tais como: o equivalente de combustível da energia necessária para o processamento, a produção de combustível a partir de óleo cru, o retorno para o cultivo de alimentos, se o biodiesel terá efeito sobre os preços dos alimentos e do custo relativo do biodiesel versus petrodiesel.
  • O debate sobre o balanço energético de biodiesel está em curso. A transição total para os biocombustíveis poderá exigir intervalos imensos de terra, se as culturas alimentares tradicionais são utilizadas (embora culturas não alimentares possam ser utilizadas). O problema seria especialmente grave para os países com grandes economias, dadas as escalas de consumo de energia com a produção econômica.
Se forem usadas somente plantas alimentares tradicionais, a maioria das nações não têm terras agrícolas suficientes para produzir biocombustíveis para os seus veículos. Nações com economias menores (consumo de energia, portanto, menor) e mais terra arável podem estar em situação melhor, apesar de muitas regiões não poderem se dar ao luxo de desviar a terra da produção de alimentos.
  • Para países do dito "Terceiro Mundo", ou mais adequadamente, países subdesenvolvidos, as fontes de biodiesel que usam terras marginais poderiam fazer mais sentido; por exemplo, óleo honge, de amêndoas de Millettia pinnata crescidas ao longo das estradas ou jatropha crescido ao longo das linhas ferroviárias.
Nas regiões tropicais, como a Malásia e a Indonésia, óleo de palma está obtido a partir do plantio de palmeiras (Arecaceae) em um ritmo rápido para suprir a crescente demanda de biodiesel na Europa e outros mercados. Estimou-se na Alemanha que o biodiesel de óleo de palma tem menos de um terço dos custos de produção de biodiesel de colza. Deve-se ter em conta sempre que a fonte direta do conteúdo energético do biodiesel é a energia solar captada pelas plantas durante a fotossíntese, e isto conduz a um possível balanço energético positivo de biodiesel.
  • Quando a palha é deixada no campo, a produção de biodiesel foi fortemente positiva em energia, gerando biodiesel 1 GJ para cada 0,561 GJ de entrada de energia (uma razão rendimento/custo de 1,78).
Quando a palha foi queimada como combustível e oleaginosas foram utilizadas como fertilizante, o rendimento/custo para a produção de biodiesel foi ainda melhor (3,71). Em outras palavras, para cada unidade de energia utilizada para produzir biodiesel, a produção foi de 3,71 unidades (diferença de 2,71 unidades seria de energia solar)

Segurança energética:
  • Um dos principais impulsionadores para a adoção do biodiesel é a segurança energética. Isto significa que a dependência de uma nação em relação ao petróleo é reduzida e substituída com o uso de fontes disponíveis localmente, tais como carvão, gás ou de fontes renováveis. 
Assim, um país pode se beneficiar da adoção de biocombustíveis, sem uma redução das emissões de gases com efeito de estufa. Embora o balanço energético total é debatido, é claro que a dependência do petróleo é reduzida. Um exemplo é a energia utilizada para fabricar fertilizantes, a qual poderia vir de uma variedade de outras fontes de petróleo. 
  • O Laboratório Nacional de Energia Renovável dos EUA (National Renewable Energy Laboratory, NREL) afirma que a segurança energética é a "força motriz número um" por trás do programa de biocombustíveis dos EUA, e a publicação "Energy Security for the 21st Century" ("Segurança Energética para o Século 21") da Casa Branca deixa claro que a segurança energética é uma das principais razões para a promoção do biodiesel. 
O presidente da Comissão Europeia, José Manuel Durão Barroso, falando em uma conferência recente sobre biocombustíveis da UE, salientou que os biocombustíveis corretamente geridos têm potencial para reforçar a segurança na UE de abastecimento através da diversificação das fontes de energia.

Impactos ambientais:
  • O aumento do interesse no biodiesel destacou uma série de efeitos ambientais associados ao seu uso. Estes incluem a redução em potencial das emissões de gases de efeito estufa, desmatamento, poluição e taxa de biodegradação.
De acordo com a análise Renewable Fuel Standards Program Regulatory Impact Analysis (Análise de Impacto e Programa Regulatório de Padrões para Combustível Renovável), da Agência de Proteção Ambiental dos Estados Unidos (EPA, Environmental Protection Agency), apresentada em fevereiro de 2010, o biodiesel de óleo de soja apresenta resultados, em média, de uma redução de 57% das emissões de gases com efeito de estufa em comparação com o diesel fóssil e biodiesel produzido a partir de resultados de resíduos de gordura uma redução de 86%. Ver o capítulo 2.6 do relatório da EPA para informações mais detalhadas

Alimento, terra e água vs. combustível:
  • Em alguns países pobres, o aumento do preço do óleo vegetal está causando problemas. Alguns propõem que o combustível só pode ser feito a partir de óleos vegetais não-comestíveis, como camelina, jatropha ou malva da praia que podem prosperar em terras agrícolas marginais, onde muitas árvores e plantas não crescem, ou produziriam apenas baixos rendimentos.
Outros argumentam que o problema é mais fundamental. Os agricultores podem passar de produção de culturas alimentares para a produção de plantas para biocombustíveis para ganhar mais dinheiro, mesmo se a novas culturas não forem comestíveis.A lei da oferta e da procura prevê que se os agricultores estão produzindo menos alimentos os preços dos alimentos vão subir. 
  • Pode demorar algum tempo, como os agricultores podem tomar algum tempo para mudar as coisas que eles estão cultivando, mas a demanda crescente de biocombustíveis de primeira geração é provável que resulte em aumentos de preços para muitos tipos de alimentos. Alguns têm apontado que há agricultores pobres e os países pobres que estão fazendo mais dinheiro por causa do aumento do preço do óleo vegetal.
Além do aumento dos preços, a promoção de monoculturas industriais de oleaginosas para a produção de biodiesel está diretamente vinculada à problemática do assim chamado land grabbing nos países em vias de desenvolvimento. Isto significa a venda de terra tradicionalmente trabalhada a investidores privados e maioritariamente estrangeiros, ameaçando a base de vida dos pequenos lavradores e implicando não raramente expulsões de povos indígenas e violações de direitos humanos
Biodiesel a partir de algas marinhas não necessariamente deslocará áreas de terras secas usadas atualmente para a produção de alimentos e novos empregos na aquacultura empregos poderiam ser criados.

Pesquisa atual:
  • Há pesquisas em andamento na busca de culturas mais adequadas e melhorar o rendimento de óleo. Usando o rendimento atual, vastas quantidades de terra e água fresca seriam necessários para produzir o óleo suficiente para substituir completamente o uso de combustíveis fósseis. Seria necessário o dobro da área da terra os E.U. ser dedicada à produção de soja, ou de dois terços para ser dedicada à produção de colza, para atender aquecimento E.U. atual e as necessidades de transporte.
Variedades de mostarda especialmente criadas podem produzir produtividade de óleo razoavelmente alta e são muito úteis na rotação de culturas com cereais, e tem a vantagem adicional de que a farinha de sobra depois que o óleo foi extraído por pressão pode atuar como um eficaz e biodegradável pesticida.
  • O NFESC, com a Biodiesel Industries, Inc, baseada em Santa Barbara, está trabalhando para desenvolver tecnologias para o biodiesel para a marinha e forças armadas dos EUA, um dos maiores usuários de combustível diesel do mundo.
Um grupo de pesquisadores espanhóis trabalhando para uma empresa chamada Ecofasa anunciaram um novo biocombustível feito a partir do lixo. O combustível é produzido a partir de resíduos urbanos em geral, que é tratado por bactérias produzindo ácidos graxos, que pode ser usado para fazer biodiesel.

Biodiesel de algas:
  • De 1978 a 1996, o National Renewable Energy Laboratory dos EUA experimentaram o uso de algas como fonte de biodiesel no Aquatic Species Program (Programa de Espécies Aquáticas). Um artigo publicado por Michael Briggs, no Grupo de Biodiesel da Universidade de New Hampshire, ofereceu estimativas realistas para a substituição de todos os combustíveis veiculares por biodiesel, utilizando algas que tem um teor de óleo natural superior a 50%, o que Briggs sugeriu poderem ser cultivadas em tanques de algas nas plantas de tratamento de águas residuais. 
Esta alga rica em óleo pode ser extraída do sistema e transformada em biodiesel, com o restante após secagem sofrendo reprocessamento para criar etanol. A produção de algas para obter-se óleo para biodiesel ainda não foi realizado em escala comercial, mas estudos de viabilidade foram realizados para chegar à estimativa de rendimento acima. 
  • Além de seu elevado rendimento projetado, aquacultura - ao contrário cultura baseada em biocombustíveis - não implica numa diminuição na produção de alimentos, uma vez que não exige nem terra arável nem massas de água doce. 
Muitas empresas estão buscando algas biorreatores para vários fins, incluindo a expansão da produção de biodiesel a nível comercial.Um estudo realizado pelo CENA (Centro de Energia Nuclear na Agricultura) da USP, investiga o uso de cianobactérias (algas azuis) como matéria-prima para a produção de biodiesel.

Fungos:
  • Um grupo na Academia Russa de Ciências em Moscou publicou um artigo em setembro de 2008, afirmando que eles tinham isolado grandes quantidades de lipídios em fungo unicelular e transformado-os em biodiesel de forma economicamente eficiente. Mais pesquisas sobre esta espécie de fungos; C. japônica e outros, são prováveis que apareçam no futuro próximo.
A recente descoberta de uma variante do fungo Gliocladium roseum aponta para a produção dos chamados mico diesel a partir da celulose. Este organismo foi recentemente descoberto nas florestas tropicais do norte da Patagônia e tem a capacidade única de transformar a celulose em hidrocarbonetos de comprimento médio tipicamente encontrados no combustível diesel.

Biodiesel a partir de borra de café usado:
  • Pesquisadores da Universidade de Nevada, Reno, tem produzido com sucesso biodiesel a partir de óleo de pó de café usado. Sua análise dos fundamentos utilizados apresentaram 10% a 15% o teor de óleo (em peso), uma vez que o óleo seja extraído, que tenha sofrido transformação em biodiesel convencional. Estima-se que o biodiesel poderia ser produzido finalmente a cerca de um dólar por galão estadunidense. 
Além disso, foi relatado que "a técnica não é difícil" e que "há muito café em torno do qual várias centenas de milhões de litros de biodiesel poderiam potencialmente ser feitos anualmente." No entanto, mesmo se todos os grãos de café no mundo foram utilizados para fazer o combustível, a quantidade produzida seria inferior a 1 por cento do diesel utilizado nos Estados Unidos anualmente. "Ele não vai resolver o problema energético mundial", disse o Dr. Misra sobre seu trabalho.

Programa biodiesel no Brasil:
  • O Programa Biodiesel é um projeto do governo brasileiro que tem como missão, promover a curto prazo, a fusão dos recursos renováveis (combustível vegetal) com os esgotáveis (petróleo), subentendendo-se que somente as refinarias autorizadas pela Agência Nacional do Petróleo (ANP) do Brasil poderão proceder a mistura dos esgotáveis com os renováveis e a consequente comercialização através de conveniados.
Importância estratégica do biodiesel no Brasil:
  • A produção do biodiesel pode cooperar com o desenvolvimento econômico de diversas regiões do Brasil, uma vez que é possível explorar a melhor alternativa de matéria-prima, no caso fontes de óleos vegetais tais como óleo de amendoim, soja, mamona, dendê, girassol, algodão etc., dependendo da região. Entre todas as culturas, a soja constitui como a principal fonte de biodiesel.
O consumo do biodiesel e de suas misturas BX podem ajudar um país a diminuir sua dependência do petróleo (a chamada "petrodependência"), contribuir para a redução da poluição atmosférica, uma vez que o biodiesel não contém enxofre em sua composição, além de gerar alternativas de empregos em áreas geográficas menos propícias para outras atividades econômicas, promovendo assim, a inclusão social.
  • Foi antecipada em três anos a mistura de 5% de biodiesel ao óleo diesel no Brasil. O chamado B5, que entraria em vigor apenas em 2013, passou a ser instituído em janeiro de 2010 .
Projeto piloto:
  • Cidades como Curitiba, capital do Estado do Paraná, Brasil, possuem frota de ônibus para transporte coletivo movida a biodiesel. Esta ação reduziu substancialmente a poluição ambiental, aumentando, portanto, a qualidade do ar e, por consequência, a qualidade de vida num universo populacional de três milhões de habitantes. A partir de agosto de 2009, ônibus especialmente adaptados para usar biodiesel B100 entrarão em circulação na capital paranaense.
Outros projetos:
  • O Rio de Janeiro também possui parte de sua frota automotiva coletiva movida pelo Biodiesel. Acredita-se que até 2010 mais de 500 cidades estarão com o biodiesel em suas bombas.
A Vale usou o biodiesel B20 em suas locomotivas em 2007, a partir de um acordo pontual realizado entre a empresa e a Petrobras. Antecipando-se à regulamentação (que prevê o uso do B5 em 2013 e do B20 em 2020), a Vale usará em 2014 o B20 para alimentar toda a frota de 216 locomotivas do Sistema Norte, bem como máquinas e equipamentos de grande porte das minas de Carajás. 
  • Estima-se que a produção anual de óleo seja de 500 mil toneladas. Este volume de biodiesel corresponde à redução de cerca de 12 milhões de toneladas de CO2 equivalente na atmosfera durante a duração do projeto, em relação às emissões do diesel comum, desconsideradas as emissões relativas à cadeia produtiva do biodiesel. Esse quantitativo corresponde à emissão de mais de 200 mil carros circulando no mesmo período.
Aspectos econômicos do biodiesel no Brasil:
  • Em 2002, a demanda total de diesel no Brasil foi de 39,2 milhões de metros cúbicos, dos quais 76% foram consumidos em transportes. O país importou 16,3% dessa demanda, o equivalente a US$ 1,2 bilhão. Como exemplo, a utilização de biodiesel a 5% no país, demandaria, portanto, um total de dois milhões de metros cúbicos de biodiesel.
Em outubro de 2009, a expectativa era de que o B5 aumentasse a produção de biodiesel para 2,4 bilhões de litros em 2010, fortalecendo a posição do Brasil na liderança mundial de energias renováveis em escala comercial.

Biodiesel - Mono-alquil ésteres

terça-feira, 29 de abril de 2014

Metanol - (Hidroximetano - Álcool Metílico)

Metanol - Hidroximetano Álcool metílico Carbinol - combustível de alta octanagem 

  • O metanol, também conhecido como álcool metílico, é um composto químico com fórmula química CH3OH. Líquido, inflamável, possui chama invisível, fundindo-se a cerca de -98 °C.
Manufatura:
  • O metanol, ou ainda o álcool da madeira, pode ser preparado pela destilação seca de madeiras, seu processo mais antigo de obtenção, e de onde, durante muito tempo, foi obtido exclusivamente.
Atualmente é obtido pela reação do gás de síntese (produzido a partir de origens fósseis, como o gás natural), uma mistura de H2 com CO passando sobre um catalisador metálico a altas temperaturas e pressões.
  • Esta reação é uma redução catalítica do monóxido de carbono, e processa-se a temperatura de cerca de 300°C e pressões de 200 a 300 atm. É utilizado como catalisador uma mistura de óxidos metálicos como óxido de cromo (III) (Cr2O3) e óxido de zinco (ZnO). A equação da reação é:
CO + 2 H2 → H3C-OH
  • Ele também pode ser produzido a partir da cana-de-açúcar.
Fontes, Reatividade:
Quantificação de Metanol e Etanol na Atmosfera: 
  • Mais de 99,9% do ar atmosférico seco, consiste de nitrogênio, oxigênio e argônio. A fração restante é composta por CO, CO2, hélio, neônio, criptônio, metano, hidrogênio, ozônio,óxidos de nitrogênio e amônia, entre outros. Vários desses constituintes podem ser gerados através de processos biológicos ou por fenômenos atmosféricos. 
Existem, entretanto, diversos compostos ou partículas que modificam a composição natural da atmosfera e que são lançados no ar por fontes principalmente antropogênicas, sendo classificados como poluentes. Aí se incluem o carbono elementar, óxidos de enxofre, hidrocarbonetos não metânicos, vários oxidantes, aerossóis de metais, partículas sólidas e substâncias radioativas.
  • A indústria, especialmente em áreas altamente industrializadas, é importante causadora da poluição do ar. Em grandes cidades, os gases de exaustão de motores de veículos, bem como a evaporação de combustíveis, podem ser os componentes principais da poluição. A quantidade e tipo de substâncias presentes na exaustão, irá depender grandemente do tipo e do grau de manutenção dos motores. 
Os poluentes atmosféricos podem ser classificados como primários ou secundários, conforme a fonte e os mecanismos de formação. Os primeiros são substâncias químicas que entram diretamente no ar vindas de fontes móveis ou estacionárias.
  • Os secundários são resultado das interações na atmosfera de poluentes primários com componentes do ar (oxigênio, ozônio, amônia, água, etc.), sob a ação de luz UV. Freqüentemente, os poluentes secundários resultam ser muito mais tóxicos do que seus poluentes primários precursores.
As conversões atmosféricas e as interações entre as diferentes substâncias, assim como processos de diluição, deposição, adsorção, absorção, entre outros, não evitam que estas se acumulem na atmosfera e se espalhem sobre vastas áreas, em processos que dependem em alto grau do tipo de fonte emissora, origem e propriedades do composto poluente e fatores meteorológicos e topográficos (velocidade e direção dos ventos, inversões térmicas, pressão atmosférica, umidade relativa, topografia da região e distância da fonte emissora, por exemplo).
  • O emprego de metanol, etanol e outros combustíveis derivados de biomassa, vem encontrando um mercado crescente como conseqüência de políticas econômicas ou de esforços em prol da redução da poluição atmosférica, causada por emissões veiculares. 
No caso específico do Brasil, a tradição em cultura de cana de açúcar, aliada a uma conjuntura econômica surgida com o aumento do preço do petróleo no início dos anos 70, levaram o país a utilizar, a partir daquela década, etanol hidratado puro e etanol anidro em mistura (22±2 % v/v) com gasolina, como combustíveis para a sua frota veicular leve. Estima-se que em 1993 a frota brasileira movida a álcool hidratado era de cerca de 4,2 milhões de veículos. 
  • No começo da década de 90, cerca de 41% dos veículos leves em Salvador era movido a álcool hidratado, sendo o restante impulsionado pela mistura gasolina-álcool, também chamada de “gasool”.
Em face disso, pode-se deduzir que é de extrema importância a disponibilidade de metodologias analíticas capazes de determinar de maneira sensível, precisa e exata, os níveis de etanol e metanol no ar atmosférico de regiões urbanas, bem como de maneiras de elucidar suas transformações na atmosfera.

Metanol e Etanol: Propriedades Gerais:
Metanol:
  • O metanol, cuja fórmula molecular é CH3OH, é um líquido incolor, com peso molecular igual a 32,04, possuindo um odor suave na temperatura ambiente. 
Desde sua descoberta, no final do século XVII, o metanol evoluiu para ser uma das matérias primas mais consumidas na indústria química. Já foi também chamado de álcool de madeira, devido a sua obtenção comercial a partir da destilação destrutiva de madeira.Seus principais usos concentram-se na produção de formaldeído, metil tert-butil éter (MTBE) - aditivo para gasolina - e como combustível puro ou em mistura com gasolina para veículos leves.

Reações e Obtenção Industrial:
  • As reações do metanol são as típicas da classe dos álcoois. Do ponto de vista industrial, as de maior importância são a desidrogenação, a desidrogenação oxidativa para gerar formaldeído empregando catalisadores metálicos e a carbonilação levando ao ácido acético, catalisada por cobalto ou ródio.
A reação catalisada por ácido entre o isobutileno e metanol, para formar o MTBE, importante aditivo para gasolina, vem encontrando aplicação crescente. O crescimento do emprego do MTBE como aditivo oxigenado para gasolina, pode ser medido por sua posição no grupo dos 50 produtos químicos de maior produção nos EUA. Do 18º lugar em 1994, avançou para o 12º em 1995, com produção total de cerca de 8,0 milhões de toneladas, tendo crescimento médio de 29,5%4.
  • Além destas, podem ser citadas as reações de formação de ésteres metílicos, e reações com ácidos inorgânicos, como as que formam o nitrato e os haletos de metila. O método mais antigo de produção industrial de metanol baseia-se na destilação destrutiva de madeira. 
Praticado desde a metade do século XIX até o começo do século XX, tornou-se no entanto obsoleto. Pode-se obtê-lo também a partir da oxidação de hidrocarbonetos. Atualmente, o processo mais empregado é o de síntese a partir de misturas pressurizadas de hidrogênio, CO e/ou CO2, em presença de catalisadores metálicos heterogêneos.

Toxicologia:
  • O metanol possui propriedades narcóticas peculiares, sendo também um irritante para as mucosas. Seu principal efeito tóxico é exercido sobre o sistema nervoso, particularmente os nervos ópticos e possivelmente a retina. O efeito sobre os olhos tem sido atribuído a neurite óptica, seguida de atrofia do nervo óptico. 
Uma vez absorvido, é lentamente eliminado. O estado de coma produzido por ingestão massiva pode durar de 2 a 4 dias. No corpo, os produtos formados a partir de sua oxidação são o formaldeído e o ácido fórmico, ambos tóxicos. Devido à lentidão com a qual é eliminado, deve ser considerado como um veneno de efeito cumulativo. Ainda que exposições curtas aos vapores não devam causar efeitos prejudiciais, quando se tornam diárias podem resultar em acúmulo de metanol suficiente para provocar danos à saúde. As exposições severas podem causar vertigem, perda de consciência e paradas respiratória e cardíaca. 
  • A ingestão oral de 25 a 100 mL já pode ser fatal. Em casos de exposição menos severa, os sintomas podem ser de fraqueza, fadiga, dores de cabeça, náuseas, além de turvação da vista, fotofobia e conjuntivite, podendo ser seguida de lesões oculares definitivas. 
Os sintomas com relação aos olhos podem regredir temporariamente, apenas para recrudescer posteriormente e progredir para a cegueira definitiva. Encontram-se igualmente relatados casos de irritação de mucosas da garganta e do trato respiratório, assim como outros tipos de lesões do sistema nervoso. 
  • No contato com a pele, esta pode tornar-se seca e quebradiça. A tabela 2 indica alguns valores estimados de tolerância para exposição a vapores de metanol.
Etanol:
  • O etanol, cuja fórmula molecular é CH3CH2OH, é um líquido incolor com peso molecular 46,07, tem sido descrito como um dos mais peculiares compostos orgânicos contendo oxigênio, dado sua combinação de propriedades como solvente, germicida, anti-congelante, combustível, depressivo, componente de bebidas, além de grande versatilidade como intermediário químico para outros produtos. Sob condições ordinárias, é um líquido incolor e claro, volátil, inflamável, possuindo um odor agradável e característico.
Suas propriedades físicas e químicas dependem primeiramente do grupo hidroxila, -OH, o qual imputa polaridade à molécula, além de promover interações intermoleculares via ligações de hidrogênio. Essas duas características ocasionam as diferenças observadas entre os álcoois de baixo peso molecular (incluídos aí o metanol e o etanol) e os respectivos hidrocarbonetos. 
  • Estudos de espectroscopia no infravermelho mostram que, no estado líquido, as ligações de hidrogênio são formadas pela atração do hidrogênio da hidroxila de uma molécula pelo oxigênio da hidroxila da outra molécula. Tal efeito de associação faz com que o etanol no estado líquido se comporte como um dímero. No estado gasoso, entretanto, ele é um monômero.
Reações e Obtenção Industrial:
  • A química do etanol é, em grande parte, representada pela química do grupo hidroxila. Assim, suas reações características são a desidratação, desidrogenação, oxidação e esterificação. Além disso, o átomo de hidrogênio do grupo -OH pode ser substituído por um metal como o sódio, potássio ou cálcio, formando-se o etóxido do metal com a liberação paralela de hidrogênio.
A obtenção industrial de etanol se dá pela síntese a partir do etileno, como sub-produto de determinados processos, ou por fermentação do açúcar, amido ou celulose. No caso do Brasil, o principal método para obtenção de etanol baseia-se na fermentação de açúcar de cana.

Toxicologia:
  • O etanol não é considerado como sendo muito tóxico, de tal forma que em um ambiente apropriadamente ventilado, a probabilidade de intoxicação por inalação é baixa. O valor limite de tolerância para o vapor no ar foi determinado em 1000 ppm, para uma exposição temporal média (TWA) de 8 horas. A quantidade mínima detectada pelo odor é referida como sendo de 350 ppm. Exposições a concentrações de 5000 a 10000 ppm resultam em irritação dos olhos e das membranas e mucosas do trato respiratório superior. 
Quando mantidas por uma hora ou mais, podem causar entorpecimento e perda de sentidos. O etanol não tem efeito cumulativo no corpo, já que é completamente oxidado a CO2 e água em um breve intervalo de tempo.
  • Menos de 10% do álcool absorvido é excretado, principalmente na urina, no ar expirado, e na transpiração. A intoxicação e o envenenamento por etanol são provocados quase que invariavelmente pela sua ingestão como bebida, e não pela inalação de vapores. Assim, uma pessoa de 70 Kg deverá ser intoxicada por uma ingestão de etanol de 75 a 80 g, sofrerá entorpecimento com 150 a 200 g e poderá morrer com 250 a 500 g. Existe alguma controvérsia sobre o fato de ser possível ou não a embriaguez resultante de inalação de vapores do etanol. A experiência tem demonstrado que ela é rara. 
Não há também evidência concreta de que a inalação do vapor possa causar cirrose. Exposições repetidas, por outro lado, desenvolvem a tolerância no indivíduo, sem que haja uma adaptação fisiológica concomitante. 
  • Evidências experimentais indicam uma associação positiva entre a ingestão moderada de álcool e os níveis do antígeno t-PA endógeno no plasma, o que levaria pessoas que consomem bebidas alcoólicas, moderadamente, a ter menos riscos de sofrer doenças de coração.
Fontes de Emissão de Álcoois para a Atmosfera:
Emissões Naturais
  • Sabe-se que as plantas emitem uma considerável quantidade de compostos orgânicos voláteis (COV) para a atmosfera. As emissões anuais globais de COV provenientes de vegetação tem sido estimadas entre 500 e 825 toneladas. Se comparado com a quantidade de espécies vegetais existentes em diferentes partes do planeta, o inventário de emissões de COV ainda é muito escasso. 
A maior parte das determinações foi realizada no continente norte-americano, focalizando principalmente a emissão de isopreno e terpenos. Assim, os inventários de emissões naturais de COV por plantas são geralmente baseados em dados relacionados ao isopreno, α-pineno, e hidrocarbonetos não-metânicos (HCNM) totais. Com relação aos HCNM, até recentemente estes eram relacionados basicamente aos monoterpenos e ao isopreno. 
  • Na atualidade, tem-se atribuído grande importância também a muitos outros tipos de compostos, especialmente COV oxigenados, os quais são igualmente emitidos. Arey et al., mostraram que hidrocarbonetos oxigenados podem representar a maior parte das emissões naturais terrestres de COV. Também, Schulting et al. relataram que certas espécies de gramíneas emitem (Z)-3-hexen-1-ol e (Z)-3-hexenilacetato, que foram denominados como “álcool e éster de folha”. Para certas espécies de semeaduras plantadas na região central da Califórnia, as emissões de (Z)-3-hexen-1-ol e (Z)-3-hexenilacetato superam as emissões “clássicas” de isopreno e terpenos.
Em trabalho recente, König et al foram capazes de determinar as taxas de emissão de mais de cinqüenta COV, compreendendo oito espécies de plantas e três diferentes tipos de gramíneas típicos de regiões da Áustria. Como fração dos COV, são relatados dezessete álcoois, entre eles o 2-metil-1-propanol, 1 e 2-butanol, 1 e 3-pentanol, 1-hexanol, linalool, mentol, etc. Nenhuma referência é feita, no entanto, a emissões de metanol e etanol.
  • MacDonald e Fall, por outro lado, se referem a dados de literatura que relatam quantidades significativas de metanol, detectadas em atmosfera rural e, mais recentemente, em regiões de florestas no sudeste dos E.U.A. 
Nesse estudo, as concentrações de metanol variaram de 11 ppbv durante o dia a 6 ppbv durante a noite. Para efeito de comparação, as concentrações de isopreno variaram de 6 ppbv durante o dia a 1 ppbv a noite.

  • O metanol é conhecido por se acumular em sementes em processo de amadurecimento, provavelmente como produto da desmetilação da pectina, por meio da enzima pectinmetilesterase. Os estudos desenvolvidos por MacDonald e Fall indicam que a principal fonte de emissão de metanol nas plantas são as folhas, as quais possuem taxas comparáveis às de emissão de isopreno.
Emissões Artificiais:

  • Durante as duas últimas décadas, cresceu e consolidou-se a tendência ao uso de etanol, metanol e outros combustíveis derivados da biomassa como uma alternativa de energia mais “limpa” do que a gerada por combustíveis fósseis. O setor de transporte consome 25% da energia mundial, além de produzir cerca de 22% do CO2 emitido para a atmosfera. 
A adição de álcool à gasolina é vista como uma solução para a queima de misturas com menor emissão de monóxido de carbono (CO). Entretanto, é importante ressaltar que devido à ausência de parâmetros de controle de emissão, não são conhecidos ou levados em consideração dados sobre as emissões causadas por evaporação e combustão incompleta, ou reações secundárias que ocorrem com estes compostos no ar atmosférico.

  • O Programa Nacional de Produção de Etanol de Cana de Açúcar (PROÁCOOL) foi instituído em 1975, com o objetivo de incentivar e subsidiar a produção de etanol que seria utilizado como combustível veicular. Logo depois, em 1979, foi introduzido o primeiro veículo movido a etanol hidratado. 
Em 1985, a fração de carros movidos a “gasool”, mistura etanol/gasolina 22:78 (% v/v), era de aproximadamente 20% nas grandes cidades. Em 1993 a frota brasileira movida a álcool era avaliada em 4,2 milhões de veículos. No começo da década de 90 em Salvador, cerca de 41% dos veículos eram movidos a álcool hidratado, enquanto os 50% correspondentes a veículos a gasolina utilizavam na realidade a mistura gasolina-álcool.

  • Estes dados eram mais ou menos extrapoláveis para outras grandes cidades brasileiras, devendo entretanto ter sofrido variações nos últimos anos em função de um novo aumento na procura por carros a gasolina. A produção de carros a álcool, que já atingiu 76% do total produzido no país em 86, caiu para menos de 1% em 96/9715. 
A frota nacional de veículos movidos a etanol hidratado, vem se mantendo no patamar de 4 milhões de unidades. Dados publicados recentemente mostram que no estado do Rio de Janeiro, de um total de 2,5 milhões de veículos (leves e pesados), 1,8 milhões, ou 72%, rodam a base da mistura gasolina - álcool, enquanto apenas 507 mil, ou cerca de 20%, ainda usam o etanol hidratado.

  • Por outro lado, a estabilização do preço dos combustíveis e o aumento na venda de automóveis, ocorridos logo após a implantação do Plano Real (julho/94), levaram a um crescimento significativo da frota veicular trafegando diariamente nas cidades. Uma vez que a engenharia de trânsito e as reformas urbanas não foram capazes de acompanhar ou prever este crescimento, vem-se observando, freqüentemente, a formação de grandes congestionamentos principalmente nas horas de “pico” de tráfego.
Pode-se supor daí que as emissões de combustíveis não queimados e seus produtos secundários tenham também aumentado de 1994 para cá. Estima-se que o etanol compareça na emissão do escapamento numa proporção da ordem de 50 a 85%, dependendo da tecnologia aplicada.

  • As propriedades que fazem do etanol um combustível distinto da gasolina são o calor de combustão mais baixo, uma razão estequiométrica ar:combustível diferente, calor de vaporização mais alto e um ponto de ebulição único, ao contrário da gasolina que destila em uma faixa. O calor de combustão mais baixo implica no uso de mais etanol para produzir a mesma energia no interior da câmara de combustão.
Em face ao exposto, o impacto do uso de álcool ou misturas gasolina / álcool deve ser avaliado, na medida em que metanol ou etanol, através de seus produtos de oxidação, tais como aldeídos de baixo peso molecular, cetonas e ácidos carboxílicos tem papel fundamental nos processos de fotooxidação na atmosfera.

Reatividade dos Álcoois na Atmosfera:
  • Com relação aos compostos carbonílicos, sabe-se que os mesmos tem papel decisivo na formação do “smog” fotoquímico, em áreas urbanas ou remotas. Os fotooxidantes são formados na atmosfera quando compostos orgânicos reativos interagem com óxidos de nitrogênio sob ação de radiação UV.
Como resultado, compostos altamente tóxicos, tais como o nitrato de peroxiacetila (PAN) e o nitrato de peroxipropila (PPN) são formados. Esses compostos têm um efeito lacrimejante agudo, danificam plantas e atacam artefatos de borracha, sendo ainda instáveis, especialmente a altas temperaturas, quando se decompõem para formar substâncias mais simples, como nitrato de metila e CO2.
  • Já os ácidos carboxílicos podem ser a principal fonte de acidez livre nas precipitações pluviométricas, especialmente em regiões onde seja rara a ocorrência de ácidos minerais fortes.
Uma grande variedade de compostos carbonílicos e de ácidos carboxílicos tem sido identificados e quantificados em fase vapor, líquida ou em forma de aerossol, consequência do grande interesse que vem despertando recentemente devido a sua participação em reações atmosféricas.
  • O papel na atmosfera dos álcoois alifáticos simples é altamente controlado pelas reações com os radicais .OH, uma vez que reações de fotólise, reações com O3 e com radicais .NO3 são desprezivelmente lentas. 
Atualmente, sabe-se muito pouco a respeito dos mecanismos de oxidação na atmosfera de compostos oxigenados do tipo álcoois e éteres. As constantes de velocidade de reação com radicais .OH, para metanol e etanol a 298 K, foram calculadas em 0,90 e 3,4 .1012 cm3 . molécula-1.s-1 respectivamente.
  • Os tempos de meia-vida na atmosfera, calculados a partir dos valores de constante determinados acima, tomando por base uma concentração de .OH igual a 1,0 x 106 moléculas . cm-3 são, respectivamente, de cerca de 9 dias para metanol e 2,5 dias para etanol. Uma comparação simples entre metanol e etanol, em termos de capacidade potencial na formação de ozônio, leva a reatividades de 4 a 5 vezes maiores para o etanol.
Não obstante a reatividade do metanol frente aos radicais .OH ser relativamente baixa, quando comparada a outros compostos orgânicos oxigenados (como por exemplo o dimetil éter, com k=2,5.1012 cm3 .molécula-1 . s-1), ele é potencialmente um melhor precursor da formação de ozônio. Isso se explica pelo tipo de espécies formadas na reação com o radical .OH. A oxidação atmosférica do metanol gera formaldeído, extremamente reativo, o qual leva à formação de radicais hidroperóxido, segundo as possíveis reações abaixo:
  • HCHO + .OH + O2 → HO2. + CO + H2O
  • HCHO + hν (360 nm) → HCO. + H.
  • HCO. + O2 → HO2. + CO 
  • H. + O2 → HO2. 
Os radicais hidroperóxido são capazes de oxidar o NO a NO2.
HO2.+NO→.ΟΗ+ΝΟ2 (11)
Deste modo a concentração atmosférica de O3 aumenta pois o estado estacionário de equilíbrio entre NO, NO2 e O3 é perturbado quando o balanço entre NO e NO2 é alterado. Quanto ao principal produto de oxidação atmosférica do dimetil-éter, o formiato de metila, este não favorece de maneira significativa a geração de ozônio.
  • O uso de etanol em atmosferas relativamente pobres em óxidos de nitrogênio (EtOH / NOx ≥ 10) pode ser atrativo em termos de redução na formação de ozônio. Por outro lado, pode levar não só à maior formação de acetaldeído, como também de nitrato de peroxiacetila (PAN). 
De 76 a quase 100% do aldeído formado durante a combustão em veículos movidos a etanol corresponde ao acetaldeído. Foi observada no Rio de Janeiro, uma relação inversa entre as concentrações de acetaldeído e PAN, ou seja, uma diminuição na concentração de acetaldeído era acompanhada por um aumento na concentração de PAN, cerca de duas horas depois.
  • A não utilização ou o uso de catalisadores ineficientes em veículos movidos a álcool ou misturas gasolina-álcool, leva a um aumento nos níveis de emissão de formaldeído e, principalmente, acetaldeído, além de ter um efeito potencial no crescimento das concentrações de “gases estufa”, como CO2, metano, óxidos de nitrogênio, etc. A variação global na concentração de CO2 na atmosfera devida à combustão de álcool, depende basicamente da forma como o mesmo é produzido.
Em caso de ser via transformação de produtos petroquímicos, pode-se esperar um acréscimo. Por outro lado, sendo produzido a partir de biomassa (ex. cana de açúcar), o consumo de CO2 no processo de crescimento da matéria-prima deve contrabalançar a sua emissão durante a queima em motores. Metanol e etanol podem ainda reagir com SO2 e ácido sulfúrico na atmosfera para formar os respectivos sulfato de dimetila e de dietila (DMS e DES). 
  • O DMS, que tem sido detectado em diversos estudos, é altamente tóxico e mutagênico, tendo sido classificado como um provável agente cancerígeno para seres humanos. Pouco se sabe, no entanto, sobre a possível formação na atmosfera de DES, e sua potencial atividade cancerígena ou qualquer outro tipo de toxicidade a ele associada.
Determinação de Metanol e Etanol:
  • A necessidade de uma avaliação mais criteriosa do papel do metanol e etanol nas reações atmosféricas, exige metodologias analíticas confiáveis para medir suas concentrações no ar, em nível de traços. 
Entretanto, no que diz respeito aos álcoois de baixo peso molecular, os dados disponíveis em literatura ainda não indicam que tenha se chegado a uma metodologia adequada, seja na amostragem ou na determinação propriamente dita, devido principalmente às faixas de concentração no ar e às interferências de outros compostos orgânicos nos métodos de coleta.
  • Grande parte dos métodos analíticos desenvolvidos para metanol e etanol, encontra maior aplicação na indústria de bebidas e nas áreas da química forense e toxicológica. A determinação de etanol é provavelmente uma das análises mais efetuadas em laboratórios de toxicologia e de análises forenses. Por outro lado, sua quantificação rápida, precisa e exata em bebidas é importante para o processo e para o controle de qualidade na indústria alimentícia. 
Entre os métodos empregados, pode-se destacar os baseados em automação por injeção em fluxo (FIA), acoplados a reações utilizando enzimas imobilizadas tais como a álcool oxidase (AOD) e álcool desidrogenase (ADH).

Metanol - Hidroximetano Álcool metílico Carbinol

  • Na reação com álcool desidrogenase, a forma reduzida da coenzima (NADH) é determinada espectrofotométricamente a 340 nm ou, alternativamente, por espectrofluorimetria ou amperometria, sendo o limite de detecção referido como sendo de 0,0025% (v/v) em etanol. As reações acima têm sido também empregadas na construção de biosensores. Dennison et al relatam a detecção indireta de vapor de etanol, em concentrações na faixa de 50 a 250 ppm, usando biosensores a base da enzima ADH imobilizada sobre suporte.
A determinação quantitativa de álcoois alifáticos por cromatografia líquida tem se ressentido da falta de um detector sensível. Os álcoois alifáticos não possuem grupamentos cromóforos ou fluoróforos, para a detecção por espectrofotometria ou espectrofluorimetria, respectivamente, além de serem considerados eletroquímicamente inativos em potenciais constantes. 
  • Vários compostos aromáticos são facilmente detectados por oxidação em eletrodos inertes, como por exemplo ouro, platina e carbono vítreo. O efeito do anel aromático é o de estabilizar, por ressonância, os radicais-livres formados em etapas de oxidação unieletrônica. Este tipo de estabilização, por outro lado, não está presente nos compostos orgânicos alifáticos, como as aminas e os álcoois. Daí resultam velocidades de oxidação extremamente lentas, mesmo para as reações termodinamicamente favorecidas.
Alternativamente, a estabilização pode ser tentada via adsorção do radical na superfície de um metal nobre servindo como eletrodo, e que possua orbitais d insaturados. Em contrapartida, ela é acompanhada pelo “envenenamento” da superfície do eletrodo por diversos produtos de oxidação, levando à sua desativação. Assim, o que normalmente é tomado como sendo não reatividade do composto alifático, pode ser na verdade consequência deste “envenenamento”. 
  • Uma solução proposta para esse problema pode ser o emprego de detecção por amperometria pulsada.Neste caso, a polarização do eletrodo está alternando-se contínuamente entre uma voltagem anódica e uma catódica, o que proporciona a limpeza e reativação constantes da sua superfície. 
Com o emprego dessas condições, etanol e metanol podem ser detectados em eletrodos de platina e ouro. As melhores condições de sensibilidade foram obtidas empregando-se o eletrodo de platina em fase móvel ácida (HClO4 50 mM). Dessa forma, os limites de detecção relatados para metanol e etanol foram, respectivamente, 0,1 e 0,2 ppm.
  • Montalvo e Ingle Jr, fizeram uso da quimioluminescência observada durante a oxidação de etanol por permanganato de potássio em meio fortemente ácido. Foram estudados diversos tipos de ácidos e sua influência no sinal detectado. Uma vez selecionado o ácido capaz de produzir os melhores resultados (HNO3), o limite de detecção do método alcançou valores de 0,3% (v/v), tendo o mesmo sido aplicado em amostras de bebida (gim).
A determinação de etanol em bebidas pode também ser realizada por meio de espectrofotometria no infravermelho. Perez Ponce et al. descrevem um método em que a amostra de bebida não tratada, é aquecida em um reator de Pyrex a uma temperatura entre 80 e 100º C. O vapor de etanol isento de água e açúcares é então arrastado, por corrente de N2, para uma célula de gás, onde é analisado na faixa de 950 a 1150 cm-1. O limite de detecção referido é de 0,02% v/v.

Determinação de metanol e etanol atmosféricos:
  • A análise de metanol e etanol em fase vapor no ar atmosférico, não apresenta, até o momento, um método que seja ao mesmo tempo direto, sensível e seletivo para esses compostos. Hayes et al relatam o desenvolvimento de um amostrador-sensor seletivo para etanol, baseado na reação desse álcool com o oxinato de vanádio - um éster fenólico do ácido ortovanádico -, que encontra-se imobilizado em uma matriz polimérica. 
O produto da reação é um complexo colorido vermelho, e a concentração de etanol pode ser associada à intensidade da cor desenvolvida pelo mesmo, a qual é lida diretamente. A reação em questão é mostrada a seguir.
  • Esse sensor, no entanto, além de encontrar-se em um estágio inicial de desenvolvimento, apresentou até o momento sensibilidades muito baixas, sendo da ordem de 1200 ppm para vapor de etanol na atmosfera, o que pode fazê-lo adequado para ambientes altamente contaminados, mas não para o monitoramento de áreas urbanas. 
Além disso, os autores relatam problemas que ainda persistem com a reprodutibilidade na formação de cor para uma dada concentração de etanol. A determinação de metanol e etanol na atmosfera envolve nitidamente dois aspectos: o primeiro deles é o que trata da amostragem propriamente dita, enquanto o segundo diz respeito à quantificação dos álcoois amostrados. Cada um será tratado separadamente a seguir.

Amostragem de metanol e etanol atmosféricos:
  • A literatura recente que aborda a questão da análise de poluentes atmosféricos, tem dedicado um grande espaço aos problemas associados à coleta de amostras e à concentração de micropoluentes. 
A amostragem é um dos estágios mais difíceis no conjunto de procedimentos analíticos de determinação de poluentes, uma vez ser a atmosfera um sistema químico lábil, contendo vários compostos químicamente ativos em baixas concentrações, sendo afetados por fatores tais como umidade, oxidantes e radiação solar, entre outros.
  • A amostragem de metanol e etanol em fase vapor requer, primeiramente, um procedimento de pré-concentração, devido às baixas quantidades presentes desses compostos no ar atmosférico. Isto pode ser feito pela passagem de determinado volume de ar através de um borbulhador ou “impinger” contendo água, por coleta através de cartuchos de adsorvente sólido ou por técnicas de crioamostragem. 
Em procedimentos de pré-concentração, os problemas que podem ocorrer de forma associada envolvem a co-captura de substâncias que diferem grandemente em propriedades químicas e concentração, sendo muitas delas reativas, instáveis e sujeitas a oxidação, hidrólise e outras reações. Além disso, uma maior concentração de substâncias na solução aquosa ou no adsorvente, aumenta a probabilidade de interações químicas e transformações irreversíveis, as quais podem ser catalisadas pela superfície do adsorvente ou pelo pH da solução.
  • A coleta dos álcoois em água pura contida em borbulhadores tem sido freqüentemente utilizada, principalmente em amostras geradas por emissões em testes de bancada, onde as condições experimentais são melhor controladas. 
Seu emprego em campo, todavia, não é prático, pois envolve a manipulação de soluções no próprio local da amostragem. Do mesmo modo, a crio-amostragem também apresenta inconvenientes práticos para ser utilizada em campo.
  • A melhor alternativa, a princípio, para a coleta e pré-concentração de metanol e etanol em fase vapor, vem a ser portanto a adsorção em um sólido. Volumes variáveis de ar são passados através de uma coluna do adsorvente com grande área superficial, após o que os compostos retidos e concentrados são recuperados,seja por dessorção por aquecimento ou por eluição com um solvente apropriado. 
Colunas contendo adsorventes sólidos ocupam pequeno volume e são de fácil utilização e transporte, tornando a técnica adequada para amostragens em campo. A aplicação de adsorventes sólidos para a amostragem e pré-concentração de substâncias no ar, vem crescendo nessa década, tanto na área de estudos da atmosfera como em higiene industrial. Os adsorventes sólidos utilizados para coleta e/ou pré-concentração de contaminantes atmosféricos, devem preencher uma série de requisitos, tais como: 
  • I) reter eficientemente pequenas massas de contaminantes, e mantê-las até que a análise possa ser efetuada ; 
  • II) sua capacidade em termos de massa retida de composto(s) deve ser suficientemente alta ;
  • III) não devem reagir com os compostos, enquanto estes estiverem armazenados, e 
  • IV) devem adsorver quantitativamente os contaminantes de interesse, mesmo na presença de outros.
Os adsorventes sólidos mais apropriados para a amostragem de metanol e etanol atmosféricos, são os capazes de reter compostos polares e voláteis. Entre os adsorventes mais empregados na análise de compostos atmosféricos em fase vapor, estão os polímeros porosos, a sílica, a alumina e aqueles a base de carvão ativado.
  • O carvão ativado é um adsorvente em geral bastante eficiente, podendo ser utilizado tanto para reter compostos orgânicos voláteis e apolares, como também os polares, embora para esses últimos ocorra normalmente dificuldade para a posterior dessorção. 
O carvão obtido da casca de côco é considerado como sendo de múltiplo propósito, enquanto o obtido de petróleo, embora menos ativo, também pode ser empregado. As colunas ou tubos de adsorção contendo carvão ativado possuem certas desvantagens. A umidade do ar tende a diminuir a eficiência de coleta, enquanto substâncias co-adsorvidas podem remover por deslocamento os contaminantes de interesse. 
  • Além disso, em certos casos, os tempos de amostragem relativamente longos podem exceder o “breakthrough” do adsorvente para compostos muito voláteis. Define-se como volume de “breakthrough”, o volume de ar ou gás de arraste, por grama de adsorvente, que atravessa a coluna até o momento em que os compostos adsorvidos começam a ser liberados na sua extremidade oposta.
Adsorventes a base de polímeros porosos - tais como Tenax®, Porapak®, Chromosorb®, etc. - são relativamente inertes, hidrofóbicos e de grandes áreas superficiais, sendo usualmente empregados na amostragem de compostos de alto peso molecular e alto ponto de ebulição. 
  • Para compostos voláteis, a eficiência de adsorção é frequentemente baixa, conduzindo não raramente à baixos valores de “breakthrough”. Devido à sua alta estabilidade térmica e grande capacidade de reter compostos de diversos pesos moleculares e polaridades, o Tenax® é mais empregado que qualquer outro polímero poroso. No entanto, deve-se ter em consideração que a sua eficiência é baixa na adsorção de álcoois, cetonas, éteres e cloroidrocarbonetos. Mesmo para baixos volumes de ar coletados (0,5 a 5,0 L) o volume de “breakthrough” é em geral ultrapassado.
Sílica gel e alumina são usualmente empregados como um complemento ao carvão ativado, na amostragem e concentração de compostos polares no ar, particularmente aminas, compostos halogenados e oxigenados, além de hidrocarbonetos. Possuindo em sua superfície grupos silanol ( -SiOH ), que lhe conferem um caráter polar, o grau de retenção de um composto em sílica é função de sua polaridade, havendo uma correlação entre o calor de adsorção da substância e o momento de dipolo da molécula,
  • Como consequência, em geral indesejável, ela é capaz de reter fortemente o vapor d’água, o que leva à desativação de seus sítios e a valores de “breakthrough” relativamente pequenos para os compostos de interesse, por conta do deslocamento frontal provocado pela frente de umidade. Sendo assim, a afinidade pelo vapor d’água torna-se um fator limitante. Em atmosferas secas, contudo, ela é um excelente adsorvente.
Na amostragem de contaminantes muito leves (hidrocarbonetos do tipo C1-C2), pode ser necessário o uso de baixas temperaturas na coluna para que a retenção seja quantitativa. A dessorção é usualmente feita com o uso de solventes polares, tais como água, metanol, dimetilsulfóxido, etc. Na amostragem de álcoois, os mesmos podem ser eluídos, por exemplo, com água. O comportamento da alumina como adsorvente se assemelha ao da sílica gel.
  • A escolha do adsorvente apropriado para coletar traços de contaminantes no ar, é determinada pelas propriedades químicas e físicas dos contaminantes em questão, além de parâmetros de amostragem tais como a velocidade do fluxo de ar através da coluna de adsorvente, o volume de ar coletado, a temperatura durante a coleta, a umidade relativa do ar e a co-adsorção de outros contaminantes. A velocidade do fluxo de uma amostra de ar através de um tubo contendo adsorvente, deve ser tal que o volume necessário para a determinação quantitativa dos contaminantes de interesse seja atingido no menor intervalo de tempo possível. 
Se esta velocidade é muito alta, todavia, a resistência da coluna ao fluxo aumenta e o tempo de passagem dos contaminantes pela mesma pode tornar-se muito curto, caso em que a adsorção pode não se concretizar. Velocidades de 100 mL a vários litros por minuto são comuns, e sua grandeza irá depender fundamentalmente da relação desejada entre tempo de coleta e massa coletada e da queda de pressão ocasionada na coluna. Quanto à influência da velocidade sobre a eficiência de adsorção dos compostos, esta varia com o tipo de adsorvente empregado.
  • Uma coluna de adsorção é, de certa forma, como uma coluna cromatográfica, e com a passagem de um fluxo de gás os compostos retidos tendem a migrar através dela. O volume de “breakthrough” é função do tipo de composto e adsorvente, da concentração do composto na amostra, da temperatura da amostragem e da presença e tipo de interferentes na amostra.
Compostos voláteis possuem em geral um volume de “breakthrough” baixo. Em consequência, o volume máximo de amostragem, idealmente, deve ser menor do que o volume de “breakthrough” para o composto mais volátil de interesse presente na amostra. Essa restrição tende a causar problemas quando o intuito é determinar compostos em muito baixas concentrações, já que no caso há necessidade de amostrar grandes volumes de ar.
  • Os resultados expostos na tabela refletem a dificuldade normalmente encontrada na determinação de metanol e etanol em atmosfera. Com exceção do Carboxen SIII, todos os demais adsorventes apresentam volumes de breakthrough extremamente baixos, considerando-se a concentração usualmente encontrada para estes compostos no ar, e a massa de adsorvente contida nas colunas de amostragem normalmente empregadas (entre 300 e 2000 mg). A 40º C, contudo, o volume de breakthrough do mesmo cai para 4,0 e 30,0 L/g, respectivamente, para metanol e etanol.
Estudos realizados indicam existir uma correlação entre o volume dos poros do sólido adsorvente e a quantidade de composto adsorvida por ele. Nesse caso, a eficiência na adsorção independeria da área superficial e da estrutura do adsorvente, sendo função apenas da conformidade estérica existente entre os poros do adsorvente e as moléculas do composto.
  • Ainda que a eficiência na adsorção aumente com um decréscimo de temperatura, a geração de baixas temperaturas no sítio da amostragem pode não ser prática, além de haver o risco de congelamento do vapor d’água presente no ar, o que desativaria o adsorvente. Salvo para compostos extremamente voláteis, o ideal é realizar a amostragem à temperatura ambiente.
Aumentos de temperatura levam à diminuições no volume de “breakthrough”. Para o carvão ativado, por exemplo, a cada aumento de 10º C corresponde um decréscimo entre 1 e 10% no volume de “breakthrough”. Durante a armazenagem da amostra, é recomendável o emprego de baixas temperaturas, já que nesse período pode ocorrer migração dos compostos adsorvidos com a consequente perda dos mesmos.
  • O volume de “breakthrough” também é reduzido pela presença de umidade no ar. Ainda que uma pequena fração das moléculas de água possa realmente ser adsorvida pelo sólido, sua presença na amostra poderá afetar o equilíbrio adsorção/dessorção dos compostos de interesse, principalmente no caso destes ocorrerem em concentrações muito baixas. Adsorventes polares, tais como sílica e alumina, adsorvem água em muito maior intensidade que muitos compostos orgânicos. 
Como consequência, tem-se não só a redução do comprimento efetivo da coluna, mas também o progressivo deslocamento dos compostos adsorvidos anteriormente.
No estudo do comportamento dinâmico de um determinado conjunto adsorvente-adsorvato, quase sempre o sistema não envolve a presença de outros compostos, que não aqueles de efetivo interesse. 
  • Entretanto, se duas ou mais substâncias da amostra real estiverem interagindo com o adsorvente, aquelas que se ligarem mais fortemente a ele irão deslocar as outras, reduzindo o comprimento efetivo da coluna para estas. A competição da água, abordada no parágrafo acima, pode ser encarada assim como um fenômeno de co-adsorção. 
Em adsorventes polares, compostos com maiores constantes dielétricas e momentos de dipolo serão retidos mais fortemente. Entre as substâncias apolares, prevalecem as de maior ponto de ebulição ou maior volume molecular.
  • Atualmente, estão sendo desenvolvidos estudos no sentido de selecionar um material para a amostragem de álcoois que alie boa capacidade de retenção com volumes de “breakthrough” satisfatórios para os níveis de concentração esperados de metanol e etanol no ar atmosférico urbano.
A recuperação para análise dos compostos retidos no adsorvente, envolve uma etapa de dessorção. Os métodos de dessorção mais empregados são a extração com solvente, a dessorção térmica e a extração em soxhlet. Com menor utilização tem-se a dessorção em vácuo e a dessorção em vapor. 
  • Na extração com solvente, o sólido adsorvente é retirado da coluna e posto em contato - em frasco selado e por um período de tempo - com um pequeno volume (ca. 0,5 mL/100 mg) do solvente extrator. 
O período de tempo em que sólido e solvente permanecem em contato é o necessário para que a extração seja quantitativa, podendo ser reduzido mediante o auxílio, por exemplo, de sonicação. Outra alternativa não envolvendo a destruição da coluna, é fazer com que o solvente extrator percole lentamente através do adsorvente. 
  • Durante o processo, as substâncias retidas são eluídas (0,5 a 10,0 mL/min) e a solução coletada em um frasco apropriado. Um artifício usualmente empregado para aumentar a eficiência da extração, é percolar o solvente extrator em sentido inverso ao do fluxo de ar empregado durante a amostragem. 
Dentre os solventes extratores, o dissulfeto de carbono -CS2- é geralmente empregado na extração de compostos orgânicos de carvão ativo, com a vantagem de não produzir sinal nos detectores de ionização em chama, largamente empregados em análises por cromatografia em fase gasosa. A desvantagem é sua alta toxicidade.
  • Mais uma vez, a escolha do solvente extrator irá depender das características do adsorvente, do composto que se deseja extrair, da técnica usada posteriormente na análise e, em menor escala, de outros fatores tais como segurança e toxicidade. Solventes polares como metanol e água são quase sempre usados para extrair compostos retidos em adsorventes polares, tais como sílica ou alumina.
A principal vantagem da dessorção térmica sobre a extração com solvente é que na primeira não ocorre a diluição dos compostos. Dessorvendo e analisando toda a massa retida do composto, o ganho em sensibilidade pode ser da ordem de 102 a 103. O método é frequentemente empregado para extrair substâncias retidas em adsorventes cromatográficos a base de polímeros porosos. Seu uso é todavia mais raro em carvão ativado e outros adsorventes com altas áreas superficiais, seja por uma baixa cinética de dessorção, seja pela possibilidade de ocorrência de reações composto/adsorvente ou entre compostos nas temperaturas requeridas ao processo. 
  • Para a sílica, a dessorção térmica só é recomendada para a recuperação de hidrocarbonetos na faixa C1 - C3, a temperaturas não superiores a 100ºC, caso em que a probabilidade de reações secundárias é baixa. Durante o processo de dessorção térmica, a temperatura na coluna do adsorvente não atinge instantaneamente o valor final desejado, mas cresce segundo uma taxa que irá depender das características de projeto do equipamento. 
Assim, os compostos retidos vão sendo progressivamente dessorvidos da superfície do sólido na medida em que se atinge uma temperatura favorável ao deslocamento do equilíbrio adsorção -dessorção. Para os compostos muito voláteis, no entanto, a dessorção ocorre em temperaturas relativamente baixas (< 100ºC) e a difusão se faz a velocidades aproximadamente iguais, sendo freqüente a saída de todos eles em uma única frente. No caso de serem analisados, por exemplo, em um sistema cromatográfico, o sinal detectado irá corresponder então à uma mistura, ao invés dos componentes separados.
  • Uma possível alternativa para corrigir o problema envolve a reconcentração (via criogenia) da mistura no início da coluna analítica e, em seguida, o aquecimento programado da coluna para a separação cromatográfica das substâncias o que, em geral, produz resultados satisfatórios.
Quantificação de metanol e etanol:
  • A coleta do metanol e etanol em atmosfera, segundo um dos procedimentos descritos na seção precedente, deve ser seguida da quantificação dos mesmos. Uma das técnicas mais adequadas à análise de metanol e etanol é a cromatografia, líquida (CL) ou gasosa (CG). 
A cromatografia líquida, entretanto, apresenta alguns inconvenientes quando comparada à gasosa, tais como uma menor eficiência na separação dos compostos, falta de um detector sensível ou seletivo para os mesmos, além de um custo relativamente mais alto, devido ao consumo de solventes especiais na fase móvel. Essas diferenças tornam-se mais perceptíveis ainda quando se empregam colunas capilares para a análise por CG.
  • A cromatografia gasosa (CG) permite a separação de substâncias voláteis, baseando-se na migração diferencial dos compostos que movimentam-se em um fluxo de gás (fase móvel), em relação a uma fase estacionária que pode ser um sólido ou um filme líquido depositado sobre um suporte sólido. A migração diferencial se estabelece a partir dos diferentes equilíbrios de partição em que cada um dos compostos se distribui entre as duas fases. 
Os equilíbrios de partição e, conseqüentemente, a separação dos compostos, podem ser alterados pela modificação das propriedades da fase estacionária ou por alterações nas densidade e viscosidade do gás da fase móvel, através de uma mudança na temperatura do mesmo.
  • Atualmente, a forma de CG que predomina em análises quali e quantitativas é a executada com colunas capilares de alta resolução (CGAR), cujo diâmetro interno é da ordem de 0,2 mm e o comprimento típico de 25 a 30 m. 
Pode-se eventualmente usar-se CG com colunas de diâmetro ligeiramente superior (tipicamente 0,53 mm) as quais são comumente conhecidas como “megabore”. A principal diferença nos dois casos é quanto ao volume da amostra injetado para a análise. 
  • O uso de CGAR se distingue por uma série de fatores, os quais são responsáveis por seu rápido avanço e domínio sobre a CG com colunas recheadas. Sua eficiência de separação é superlativamente maior, as análises mais rápidas, a detecção mais sensível e parâmetros de separação, tais como programação de temperatura e velocidade linear do gás (fase móvel) tem melhor reprodutibilidade entre análises. 
A CGAR é de ampla utilização na análise de poluentes ambientais, principalmente com uso de colunas capilares de fase estacionária quimicamente ligada ao suporte sólido. Tais colunas tem como vantagens em relação às de fase mecanicamente depositada, maiores resistências térmica e mecânica (menor “sangramento”), o que reverte na possibilidade do emprego de filmes mais espessos. Enquanto na coluna cromatográfica é executada a separação dos compostos, no detector é feita a sua quantificação e/ou identificação.
  • A determinação é feita em um fluxo de gás de arraste (fase móvel) ao qual, em princípio, o detector responde com sensibilidade diferente à manifestada em presença do analito. As características de um detector determinam, em ampla escala, as características gerais de funcionamento de um sistema cromatográfico.
A seletividade em uma determinação é função das seletividades da coluna e do detector. Na prática, é sempre proveitoso o emprego de um detector que alie uma alta sensibilidade à seletividade frente aos compostos de interesse.
  • Junto à seletividade e alta sensibilidade, outras características desejáveis a um detector são uma alta faixa de linearidade na resposta, respostas rápidas à presença do analito, facilidade de operação e não destrutividade da amostra, essa última particularmente importante quando se trabalha com cromatografia preparativa ou com detectores em série. 
Os detectores mais comuns atualmente empregados em CG são os que medem uma concentração instantânea de analito (detectores dependentes de concentração), ou a massa de um analito na fase móvel (detectores dependentes de massa). 
  • De fácil operação, o detector por ionização em chama (DIC) é de grande aplicabilidade na análise de metanol e etanol, embora sua sensibilidade em geral decresça no sentido hidrocarbonetos > ésteres > álcoois > ácidos. Sua operação baseia-se no fenômeno de aparecimento de espécies carregadas, em uma chama de hidrogênio/ar, desde que presentes traços de alguma substância orgânica. Tal processo de ionização provoca um repentino aumento da corrente elétrica entre dois eletrodos, um deles o queimador e o outro acima deste. O aumento na corrente é proporcional à quantidade de analito que atravessa o detector.
No caso de necessidade de diminuição do limite de detecção para metanol e etanol, pode-se ainda lançar mão de reações de derivatização, capazes de transformar o álcool, quantitativamente, em uma molécula derivada que gere uma alta resposta quando analisada por determinado tipo de detector. 
  • Dentre uma série de reações de derivatização referidas na literatura, uma particularmente interessante é a que envolve o cloreto de pentafluorbenzoíla.
O éster, produto da reação, é separado cromatograficamente e devido à grande quantidade de átomos de fluor na molécula, gera uma alta resposta em um detector por captura de elétrons (DCE). O detector por captura de elétrons está entre os mais sensíveis em CG, com capacidade de detectar concentrações da ordem de ppt ou menos, se considerar-se a possibilidade de uma pré-concentração da amostra. 
  • Além disso, possui boa seletividade para compostos polialogenados. Se atribuirmos arbitrariamente um fator de resposta igual a 1,0 para os hidro carbonetos no DCE, o respectivo fator de resposta para polifluor compostos pode chegar a 1 x 106 . 
Vale ressaltar, entretanto, que a reação foi testada com álcoois puros (100 mg de n-hexanol, ciclohexanol e fenol) e em soluções não aquosas, diferindo significativamente das condições esperadas para concentrações de álcool medidas no ar.

Outras Considerações:
  • A ausência de parâmetros de controle de emissão e a falta de dados sobre as reações secundárias que ocorrem com metanol e etanol no ar atmosférico, tornam necessário e importante o desenvolvimento ou aperfeiçoamento de métodos de amostragem e análise para esses álcoois em ar.
Para que atinja os objetivos de conhecimento das suas concentrações no ar em variados locais e de seus parâmetros de reatividade frente a outros poluentes, a análise de metanol e etanol em fase vapor na atmosfera deve ser equacionada em termos de duas etapas distintas: 
I) amostragem dos compostos no ar e
II) quantificação dos produtos amostrados.
Os álcoois, em particular metanol e etanol, podem ser quantificados por várias técnicas, das quais uma das mais simples e adequadas ao tipo de matriz envolvida vem a ser a cromatografia gasosa (CG), com colunas capilares ou do tipo “megabore”, usando um detector por ionização em chama.
Todavia, a etapa de pré-concentração da amostra parece ser nesse caso imprescindível, a fim de que se alcancem os limites de detecção desejáveis.
  • Dentre os métodos de amostragem e pré-concentração usualmente empregados para compostos em fase vapor na atmosfera, a adsorção em fase sólida acompanhada de dessorção térmica ou por solvente apresenta vantagens em relação aos demais métodos.
Colunas contendo adsorventes sólidos são de fácil utilização e transporte, tornando a técnica adequada para amostragens em campo. Assim, sua aplicação para a coleta de substâncias presentes no ar vem crescendo continuamente, tanto na área de estudos da atmosfera como em higiene industrial. 
  • Os baixos valores de “breakthrough” para metanol e etanol, normalmente propiciados pelos adsorventes mais comuns, tornam entretanto necessário que se testem novos tipos de materiais para este fim.
Outros procedimentos visando o aumento de sensibilidade na detecção, tais como derivatização dos álcoois e análise dos produtos de reação por detectores específicos, devem ser melhor estudados do ponto de vista de cinética e equilíbrio das reações envolvidas.

Usos:
  • O metanol é principalmente um solvente industrial, pois ele dissolve alguns sais melhor do que o etanol; é utilizado na indústria de plásticos, na extração de produtos animais e vegetais, e como solvente em reações de importância farmacológica, como no preparo de colesterol, vitaminas e hormônios. É matéria prima na produção de formaldeído. É usado no processo de transesterificação da gordura, para produzir biodiesel.
É usado como combustível em algumas categorias de monopostos dos EUA (ex: Champ Car, IRL, Dragster). As equipes e o piloto são instruídos de como agir diante de um incêndio provocado por um acidente. Como o fogo não é visível é preciso jogar água em todos os cantos onde supostamente está ocorrendo e no próprio piloto e membros da equipe se for o necessário.

Efeitos potenciais à saúde:
Inalação:
  • Causa leve irritação às membranas das mucosas. Tem efeito tóxico no sistema nervoso, particularmente no nervo óptico. Os sintomas da exposição incluem dor de cabeça, náusea, vômito, cegueira, coma e até a morte.
Ingestão:
  • Tóxico:
  • Irrita as membranas da mucosa. Pode causar intoxicação e cegueira (que pode ser permanente), Dose fatal: 20 - 25 ml.
Contato com a pele:
  • Pode deixar a pele seca e quebradiça. Se ocorrer absorção; sintomas parecidos com a inalação.
Contato com os olhos:
  • Irritante. 
  • A exposição contínua pode causar lesões nos olhos, podendo evoluir para cegueira ao 'dissolver' a retina.
Exposição crônica:
  • Prejudica a visão e causa aumento do fígado (hepatomegalia). Repetidas ou prolongadas exposições podem causar irritação na pele.
Agravo das condições pré-existentes:
  • Pessoas com desordens de pele, problemas nos olhos, ou com função prejudicada dos rins e fígado podem ser mais suscetíveis aos efeitos da substância.
Tratamento da intoxicação:
  • Antigamente, o tratamento da intoxicação por metanol era feito à base de bebidas alcoólicas, principalmente Uísque. Sabe-se que o etanol, forma do álcool nas bebidas, liga-se com muita facilidade ao ácido fórmico tóxico, o principal metabólito do metanol, facilitando sua excreção. 
Para se alcançar o efeito desejado, é necessário levar o paciente a um estado de embriaguez. Isto equivale a 4 doses de 45ml de Uísque. Atualmente, este método é pouco utilizado devido aos avanços farmacológicos. Nas unidades de saúde com recursos, usam-se o fomepizol um antagonista competitivo da desidrogenase láctica.

Álcool metílico, ou metanol, é utilizado
como um reagente para laboratórios e centros de investigação e
é altamente tóxico para os seres humanos quando consumido.