quinta-feira, 6 de agosto de 2015

O Uso de Fertilizantes Minerais e o Meio Ambiente

O Uso de Fertilizantes Minerais e o Meio Ambiente

  • A agricultura, em conjunto com outros elementos tais como água, energia, saúde e biodiversidade, tem uma função de grande relevância na conquista do Desenvolvimento Sustentado. A indústria de fertilizantes, por sua vez, tem desempenhado, por mais de 150 anos, um papel fundamental no desenvolvimento da agricultura e no atendimento das necessidades nutricionais de uma população continuamente crescente. De fato, basta mencionar que, em geral, os fertilizantes são responsáveis por cerca de um terço da produção agrícola, sendo que em alguns países os fertilizantes chegam a ser responsáveis por até cinqüenta por cento das respectivas produções nacionais.
Os fertilizantes promovem o aumento de produtividade agrícola, protegendo e preservando milhares de hectares de florestas e matas nativas, assim como a fauna e a flora. Sendo assim, o uso adequado de fertilizantes se tornou ferramenta indispensável na luta mundial de combate à fome e subnutrição.
A indústria de fertilizantes está consciente de suas responsabilidades sociais e ambientais relacionadas à produção e ao uso adequado de seus produtos. A indústria de fertilizantes, por meio de sua entidade representativa International Fertilizer Industry Association (“IFA”), trabalha continuamente na busca do aprimoramento da eficiência do uso dos nutrientes das plantas com estudos que indiquem as melhores práticas possíveis de adubação, a fim de beneficiar os agricultores com o aumento de produtividade, a melhoria da qualidade de alimentos e a preservação do meio ambiente.
  • A IFA é a associação internacional de indústrias de fertilizantes que inclui aproximadamente 450 empresas, representando mais de 80 países, sendo que aproximadamente metade destas empresas está baseada em países em desenvolvimento. A IFA desenvolve trabalhos de publicações e divulgação de informações em diversos países para promover ativamente o uso e a produção dos nutrientes das plantas de forma eficiente e responsável, a fim de manter e incrementar a produção agrícola mundial de maneira sustentável.
A IFA tem parcerias efetivas com importantes organizações internacionais, tais como: Banco Mundial, Organização de Alimentos e Agricultura (FAO), Programa de Meio Ambiente das Nações Unidas (UNEP) e outras agências da Organização das Nações Unidas. O presente trabalho é mais um exemplo da estreita cooperação de nossa entidade com a UNEP.
  • Sendo assim, é com orgulho e satisfação que apresentamos esse trabalho que, originalmente preparado por K. F. Isherwood, foi agora devidamente traduzido e adaptado às condições brasileiras pelos Professores Alfredo Scheid Lopes e Luiz Roberto Guimarães Guilherme. Acreditamos fortemente que a publicação desse precioso material será de grande valia para todos aqueles que se preocupam não apenas com o uso eficiente e sustentável dos fertilizantes minerais mas também com questões como segurança alimentar, saúde e preservação do meio ambiente que são tão relevantes nos dias de hoje. Finalmente, cumpre ressaltar que o presente trabalho é fruto da estreita parceria existente entre a IFA e a indústria brasileira de fertilizantes, por meio de seus associados e da ANDA.
O que são os fertilizantes:
  • Fertilizantes minerais são materiais, naturais ou manufaturados, que contêm nutrientes essenciais para o crescimento normal e o desenvolvimento das plantas. Nutrientes de plantas são alimentos para as espécies vegetais, algumas das quais são utilizadas diretamente por seres humanos como alimentos, outras para alimentar animais, suprir fibras naturais e produzir madeira. O homem e todos os animais dependem totalmente das plantas para viver e reproduzir. A percepção pública sobre fertilizantes minerais geralmente não leva em conta esses simples fatos.
Três dos nutrientes têm que ser aplicados em grandes quantidades: nitrogênio, fósforo e potássio. Enxofre, cálcio e magnésio também são necessários em quantidades substanciais. Esses nutrientes são constituintes de muitos componentes das plantas, tais como proteínas, ácidos nucleicos e clorofila, e são essenciais para processos tais como transferências de energia, manutenção da pressão interna e ação enzimática.
  • Sete outros elementos são necessários em quantidades pequenas e são conhecidos como “micronutrientes”. Mais cinco elementos são requeridos por certas plantas. Esses elementos têm uma grande variedade de funções essenciais no metabolismo das plantas. Os metais são constituintes de enzimas que controlam diferentes processos nas plantas. A deficiência de qualquer um desses nutrientes pode comprometer o desenvolvimento das plantas.
Fertilizantes minerais compreendem elementos que ocorrem naturalmente e que são essenciais para a vida. Eles dão a vida e não são biocidas. Fertilizantes são usados para:
  • Suplementar a disponibilidade natural do solo com a finalidade de satisfazer a demanda de culturas que apresentam um alto potencial de produtividade e de levar a produções economicamente viáveis;
  • Compensar a perda de nutrientes decorrentes da remoção da culturas, por lixiviação ou perdas gasosas;
  • Melhorar as condições não favoráveis ou manter boas condições do solo para produção das culturas.
A existência de uma relação estreita entre taxas de consumo de fertilizantes e produtividade agrícola tem sido, sem sombra de dúvida, estabelecida. Entre os vários insumos agrícolas, os fertilizantes, junto com, talvez, a água, são os que mais contribuem para o aumento da produção agrícola.
  • Nesta publicação, o termo fertilizante“mineral” é usado no lugar de termos tais como fertilizantes “químicos”, “artificiais” ou “sintéticos”. À exceção dos nitrogenados, os demais fertilizantes são, na verdade, minerais mais ou menos purificados. No caso do nitrogênio, aproximadamente 99% do suprimento total são produzidos da amônia, que é fabricada fazendo reagir o abundante nitrogênio atmosférico com o hidrogênio.
Onde são usados os fertilizantes?
  • O uso de fertilizantes como uma prática agrícola regular começou, na maioria dos países da Europa, da metade para o final do século dezenove, mas aumentos sensíveis do consumo nesses países ocorreram nas três décadas após a 2ª Guerra Mundial. O aumento de consumo nos países em desenvolvimento começou nos anos sessenta.
Em 1960, 87% do consumo mundial de fertilizantes ocorreram nos países desenvolvidos, incluindo a União Soviética e os países da Europa Central. De 1980 a 1990 o consumo tendeu a se estabilizar nessas regiões, menos na União Soviética, onde continuou aumentando até 1988.
  • O crescimento populacional tinha sido nivelado, quase todos estavam alimentados de maneira adequada, a exportação mundial de produtos agrícolas tinha estagnado por causa de problemas econômicos nos países importadores e, em propriedades bem manejadas, o ponto de produtividade máxima econômica das variedades disponíveis tinha sido alcançado.
Entre 1989 e 1994 o consumo de fertilizantes dos países desenvolvidos, de uma maneira geral, caiu de 84 milhões de toneladas de nutrientes em 1988 para 52 milhões em 1994.
  • Essa queda foi mais intensa, cerca de 80% do total, nos antigos países comunistas da Europa Central e da antiga União Soviética. A produção das culturas na região também caiu, mas não na mesma proporção. Isto porque sob um sistema de planejamento centralizado, os fertilizantes foram usados de modo ineficiente e reservas de alguns nutrientes de plantas foram acumuladas no solo, podendo, então, ser exploradas para ajudar a alimentar as culturas.
Nos países em desenvolvimento, até os anos sessenta, os fertilizantes eram aplicados, principalmente, nas culturas industriais, tais como chá, café, dendê, fumo e seringueira, enquanto o uso em outras culturas, principalmente as produtoras de alimentos básicos, era pequeno ou não existente. 
  • Mesmo onde os fertilizantes eram aplicados, as doses tinham que ser pequenas em vista das variedades altas tradicionais de cereais cultivadas naquela época. A introdução de variedades de porte baixo, de alta produtividade e responsivas a fertilizantes em meados da década de 60, provocou um tremendo aumento no consumo de fertilizantes aplicados às culturas anuais. Infelizmente, esse desenvolvimento ainda não ocorreu em muitos países do Sub-Sahara na África, por motivos climáticos e econômicos e também por falta de variedades adequadas.
Desde 1960, o consumo de fertilizantes nos países em desenvolvimento aumentou mais ou menos de forma contínua, e hoje atinge cerca de 60% do consumo mundial, em comparação com 12% em 1960, uma tendência que está continuando. Com sua população aumentando rapidamente, muitos países em desenvolvimento são compelidos a dar alta prioridade à produção agrícola e ao uso de fertilizantes.
  • Entre 1993/94 e 1997/98, o consumo mundial de nutrientes de fertilizantes aumentou de 120 para 136 milhões de toneladas, com uma taxa média anual de crescimento de 3%. O consumo na China, Sul da Ásia e América Latina aumentou em 10, 5 e 2 milhões de toneladas, respectivamente. Todavia, em muitos países do Sub-Sahara, na África, a quantidade de fertilizantes não é apenas muito baixa, mas também o que é usado é aplicado, principalmente, em cultivos comerciais em larga escala. As doses de fertilizantes usadas nas culturas alimentícias são particularmente baixas. Existe uma grande variação nas doses aplicadas entre países, como
Onde os fertilizantes são produzidos:
  • O aumento na fabricação de fertilizantes é resultante de uma industrialização global, com as indústrias localizadas perto das fontes de matérias-primas ou em países em desenvolvimento com a expansão do mercado para os produtos. Produção de fertilizantes não é, decididamente, um monopólio do mundo desenvolvido.
Fertilizantes nitrogenados:
  • A energia necessária para a produção de fertilizantes nitrogenados é encontrada em todo o planeta e existe produção em todas as regiões do globo. Entretanto, tem havido uma tendência para aumentar a produção não apenas em locais onde há disponibilidade de gás natural barato, como o Oriente Médio e Caribe, mas também nas principais regiões de consumo, tais como Sul da Ásia e China.
Fosfato:
  • Os principais produtores de rocha fosfática e fertilizantes fosfatados são os E. U. A., a antiga União Soviética, China, África e Oriente Médio. Vários desses são países em desenvolvimento e a indústria de fosfatos dá uma contribuição importante às suas economias.
Durante as duas últimas décadas tem havido uma tendência distinta para o processamento das rochas fosfáticas em países com reservas substanciais desse material , especialmente no Norte da África e E.U.A, mas também no Oriente Médio, Sul e Oeste da África. Tem havido fechamento de várias fábricas na Europa Oriental, onde a produção de ácido fosfórico e outros produtos caiu cerca de 60% desde 1980, por razões econômicas e ambientais, particularmente pelo problema de onde colocar o gesso, que é um subproduto dessas indústrias.

Potassa:
  • O potássio é produzido em poucos países onde os minérios são localizados. Em 1996, Rússia e Bielo-Rússia respondiam por 23% da produção mundial, Canadá por 35%, Europa Oriental por 23% e Israel e Jordânia por 11%, essas poucas regiões sendo responsáveis por um total de 92% da produção mundial.
O que aconteceria se?
O que aconteceria se os fertilizantes minerais não fossem usados?
  • O efeito imediato de se parar o uso de fertilizantes minerais é que a produção das culturas iria cair a níveis sustentáveis apenas pelo solo e pela relativamente pequena contribuição dos materiais orgânicos ; as produtividades iriam cair progressivamente, à medida que as reservas do solo fossem utilizadas, eventualmente atingindo os baixos níveis observados em experimentos de campo de longa duração. Na ausência de fertilizantes, é provável que os sistemas de produção e os métodos de manejo iriam mudar, mas, apesar de todos os esforços, é certo que a estrutura atual e as produções agrícolas não poderiam ser mantidas.
Simplesmente haveria quantidade insuficiente de nutrientes de plantas no sistema geral. Os países ricos poderiam possivelmente obter o suficiente, mas não os países pobres, e talvez não os pobres nos países ricos.
  • Schmitz e Hartmann (1994) estabeleceram modelos para estimar, em termos quantitativos, o efeito da redução de agroquímicos, incluindo nitrogênio, na Alemanha. Eles calcularam que uma redução de 50% na dose de nitrogênio acarretaria uma redução de 22% nas produtividades a curto prazo e 25 a 30% no médio prazo; os lucros da propriedade seriam reduzidos em cerca de 40%, a renda em 12%, a produção total de cereais em 10%, com um impacto substancial nos empregos na agricultura e nas indústrias de processamento de alimentos, diminuição nos produtos agrícolas de exportação, aumento nas importações, e um aumento no preço mundial de cereais de 5%. 
Com reduções controladas no uso de nitrogênio, poderiam ser obtidos, rapidamente, alguns benefícios ecológicos, mas, com a adoção indiscriminada dessa prática, os ganhos diminuiriam e poderiam mesmo se transformar em perdas, com a diminuição das áreas florestadas e das áreas alagadas à medida que estas forem postas sob cultivo. Se essa é a posição na Alemanha, qual seria em países menos industrializados?
  • Na França, em 1850, a produtividade média do trigo era de 1000 kg/ha. Em 1950, atingiu 1600 kg/ha, com um consumo de fertilizantes de 1,1 milhão de toneladas. 
Em 1973 a produtividade média foi de quase 4500 kg/ha, com um consumo de fertilizantes de 5,8 milhões de toneladas de nutrientes, dos quais 1,8 milhões era de nitrogênio. A produtividade média entre 1994 e 1996 foi de 6772 kg/ha com um consumo de fertilizantes de 4,8 milhões de toneladas de nutrientes, dos quais 2,4 milhões eram de nitrogênio. Na França, tem havido uma correlação estreita entre produção de cereais e fornecimento de nitrogênio. Esse efeito foi possível pelo uso de uma combinação de todos os fatores de produção, espécies e variedades com alto potencial genético, cultivadas em solo bem preparado e protegidas contra pragas e doenças. Variações anuais nas produtividades foram minimizadas e os custos de produção diminuíram.
  • Com as produtividades de 1950 estima-se que a donas de casa gastariam 50% do seus salários com alimentação, comparado com os atuais 20%. A França é hoje o segundo exportador mundial de produtos agrícolas e derivados.
É muitas vezes salutar, quando se prega o fim de algum avanço tecnológico, olhar para trás, para uma época antes que o avanço tivesse ocorrido. Price (1993) descreveu a situação na França até o século dezenove. Prosperidade ou miséria, vida ou morte dependiam de boa colheita.
  • A última grande fome na França ocorreu no início dos anos 1700’s, apesar de “crises de subsistência”, quando os preços dos cereais aumentaram de 50 para 150%, continuarem a ocorrer até meados de 1800’s. As crises de 1788-89 e 1846-47 foram particularmente notáveis em termos do impacto social, econômico e político, que precedeu a revolta popular.
Na China, usando matéria orgânica para manter a fertilidade da terra, a produtividade de arroz foi mantida em 700 kg/ha por milhares de anos. Durante os últimos 40 a 50 anos, usando uma combinação de matéria orgânica disponível e um sempre crescente uso de fertilizantes minerais, a produtividade aumentou em 6 vezes, atingindo na média, entre 1994 e 1996, 5958 kg/ha.
  • A. Subba Rao e Sanjay Srivastava (1998) escreveram: Os fertilizantes desempenharam um papel proeminente na agricultura da Índia. De meros 0,13 milhões de toneladas em 1955-56, o consumo de fertilizantes aumentou dramaticamente nas últimas quatro décadas atingindo 14,3 milhões em 1996-97. Como conseqüência da crescente demanda de grãos alimentícios, fibras, combustível e forragem para atender às necessidades da sempre crescente população, o consumo de fertilizantes está crescendo anualmente. A contribuição dos fertilizantes na produção total de grãos na Índia tem sido espetacular; de um por cento em 1950 para 58 por cento em 1995. De acordo com M.
Velayutham, a contribuição dos fertilizantes para a produção adicional de alimentos foi de 60 por cento. Consumo de fertilizantes e produção agrícola mostraram um crescimento fenomenal durante o período de 1951 e 1995. A preocupação atual é assegurar a sustentabilidade da produção das culturas, um meio ambiente saudável e uma lucratividade para o produtor de baixa renda, com o uso de fertilizantes.
  • Em geral, é difícil estimar a contribuição dos fertilizantes minerais na produção da agricultura global em vista da interação dos vários fatores envolvidos nos processos biológicos. Um levantamento da IFA cobrindo países desenvolvidos, levado a efeito nos anos 1970’s, indicou que as produtividades iriam cair rapidamente em cerca de 40 a 50% se os fertilizantes não fossem mais utilizados. De acordo com dados da China, os fertilizantes contribuem com 40 a 50% na produção de grãos e 47% na produção de algodão. V. Smil (1999) estima que, em termos mundiais, 40% da proteína da dieta humana vêm do nitrogênio fixado pelo processo Haber-Bosch para a fabricação de amônia.
No Japão, A. Suzuki (1997) relata que levantamentos em 1990, em 92 experimentos, mostraram que a produtividade média nacional obtida sem o uso de nitrogênio, aplicado por vários anos, foi 70 % das parcelas adubadas. As produtividades diminuíram gradualmente com o passar dos anos. Em um experimento de longa duração, após 50 anos de adubação NPK, não houve diminuição de produção nas parcelas adubadas. A produtividade das parcelas sem fertilizantes foi cerca de 40% das parcelas adubadas.
  • Mackenzie e Taureau (1997) obtiveram uma típica curva de resposta de trigo de inverno à adubação nitrogenada na Inglaterra. Mesmo no ponto de ótimo econômico, em que o valor da unidade adicional de nitrogênio é igual ao valor obtido com a cultura, a resposta foi de 3 kg de grãos por kg de N. Sem nitrogênio, a produtividade foi de 4 t/ha ao invés de 7 t/ha no ponto ótimo econômico. De outra série de experimentos na Inglaterra, mencionados pelos mesmos autores, foi estimado que a produtividade do trigo aumentou em 24 kg de grãos para cada kg de N dos fertilizantes até o ponto em que a curva de resposta atingiu o seu platô.
Com base em um larga amplitude de experimentos em um grande número de países, a FAO considera que “é razoável aceitar que 1 kg de nutriente no fertilizante (N+P2O5+K2O) produz cerca de 10 kg de grãos de cereais”(FAO, 1984). K. K. M. Nambiar (1994) resume resultados de experimentos de longa duração na Índia.

A demanda futura por produtos agrícolas:
População:
  • Entre hoje e 2020, o crescimento da população mundial vai ocorrer principalmente nos países em desenvolvimento. De acordo com as projeções do Banco Mundial efetuadas em 1994-1995, a população mundial vai aumentar de 5,7 bilhões de pessoas em 1995 para 7 bilhões em 2020. Isso inclui um aumento na China de 1,2 para 1,5 bilhões, no Sul da Ásia de 1,3 para 1,9 bilhões e na África de 0,7 para 1,2 bilhões.
A taxa de crescimento será possivelmente maior na África, mas em vista da maior base de população no Sul da Ásia e da China, será inevitável um aumento substancial nessas regiões.
  • O Instituto Internacional de Pesquisa em Política de Alimentos (IFPRI, 1999) estima que os países em desenvolvimento serão responsáveis por cerca de 85% do aumento da demanda global de cereais e carne entre 1995 e 2020.
A FAO calcula que 680 milhões de pessoas, 12% da população mundial, poderão ser cronicamente subnutridas em 2010, o que significa uma queda em relação aos 849 milhões em 1990-92, embora seja ainda um número bastante elevado. Setenta por cento desses estarão no Sub-Sahara na África e no Sul da Ásia, especialmente em Bangladesh.
  • Na África e no Oriente Próximo, o número de pessoas famintas vai aumentar, embora a proporção da população que é subnutrida irá diminuir. Muitas dessas pessoas são os pobres da zona rural, que não dispõem de poder de compra para satisfazer suas necessidades nutricionais, mesmo se houver oferta de suprimentos. Mulheres e crianças são as mais afetadas. A questão nesse caso é desenvolver sistemas agrícolas que irão dar a essas pessoas subsistência e renda.
Renda:
  • De acordo com o Instituto Internacional de Pesquisa em Política de Alimentos (IFPRI, 1997), entre 1993 e 2020, a demanda mundial de cereais terá um aumento esperado de 41%. Nos países em desenvolvimento, a demanda de cereais para alimentação do gado deve dobrar, enquanto se espera um aumento de demanda para consumo humano direto em 47%, apesar de que o maior aumento absoluto deverá ocorrer nesse último caso. Haverá também grandes aumentos semelhantes da demanda por outras culturas. 
O crescimento global da renda é projetado com uma média de 2,7% ao ano entre 1993 e 2020, sendo a taxa de crescimento nos países em desenvolvimento quase duas vezes a dos países desenvolvidos. O crescimento econômico, o aumento da renda e a urbanização, particularmente na Ásia e América Latina, estão levando a mudanças rápidas nas dietas, em favor de alimentos produzidos do uso intenso de grãos, tais como a carne, em particular da carne vermelha. Isso leva a um expressivo aumento na demanda de grãos para alimentar o gado, sendo o impacto das necessidades de cereais ampliado pela relativamente baixa eficiência de conversão alimentar do gado de corte. O IFPRI (1999)
  • estima que os agricultores do mundo terão que produzir 40% mais grãos em 2020, em comparação com 1995. Entretanto, é pouco provável que a expansão da área com cereais seja maior que 5%; cerca de dois terços dela deverá ocorrer na difícil região do Sub-Sahara na África.
Inevitavelmente, a maior parte do aumento da produção deverá vir de maiores produtividades por unidade de área, o que irá exigir uma correspondente maior quantidade de nutrientes de plantas, de uma ou outra fonte.

Fertilizantes e alimentos:
  • A contribuição exata dos fertilizantes minerais na produção agrícola é discutível, mas em qualquer caso dos milhões de experimentos de campo que foram conduzidos no mundo, sua grande influência na produtividade das culturas é claramente demonstrada.
Em um artigo no “The Observer”, Nova Deli, em 17 de abril de 1997, Dr. Swaminathan, um cientista de renome na Índia, disse que:
Fertilizante é a chave para assegurar o alimento necessário para mais de 1,3 bilhões de indianos por volta do ano 2025. Nenhum país foi capaz de aumentar a produtividade agrícola sem aumentar o uso de fertilizantes químicos. Considerando uma previsão conservadora de uma população de 1,3 bilhões por volta de 2025, a Índia irá necessitar de 30 a 35 milhões de toneladas de NPK de fertilizantes químicos além de 10 milhões de toneladas de fontes orgânicas e de biofertilizantes, para produzir a necessidade mínima de 300 milhões de toneladas de grãos. Cientistas têm encontrado crescentes evidências do aumento da deficiência de fósforo e potássio nos solos, agravado pela aplicação desproporcional de altas doses de N em relação ao P e K. Enxofre tem sido identificado como crucial para otimizar a produtividade de sementes oleaginosas, ervilhas, feijões, outras leguminosas e cereais de alta produtividade.
N. E. Borlaug, Prêmio Nobel da Paz (1997), falando na África, afirmou que: “Meus 53 anos de experiência em países em desenvolvimento de baixa renda me dizem que pequenos agricultores estão desgostosos com essa tecnologia de “baixos insumos, baixas produções” uma vez que elas tendem a perpetuar o trabalho penoso do homem e o risco de fome. Isto certamente tem sido nossa experiência no Projeto Sasakawa – Global 2000, onde os agricultores têm dito a nós com veemência que eles querem ter acesso a aumentos de produtividade e a tecnologias que reduzam o trabalho pesado,o que tem provado que eles estão aptos e entusiasmados em modernizar sua produção”.
  • Várias instituições, entre elas FAO, IFPRI, UNDP, Departamento de Agricultura dos Estados Unidos e Banco Mundial, têm feito projeções em relação à segurança alimentar.
Elas divergem em relação às pressuposições que são feitas, mas essencialmente concordam que o suprimento de alimentos no mundo terá que continuar a crescer, e crescer rapidamente.
  • Investimentos na agricultura, especialmente em pesquisa e serviços de orientação, serão essenciais para que esses objetivos sejam atingidos .
Aspectos Econômicos:
  • Existe hoje uma ampla concordância de que a condição necessária para o crescimento econômico da maioria dos países em desenvolvimento seja uma agricultura produtiva; existem algumas exceções, mas elas são poucas. Isso não foi sempre o caso. Nos anos 1950’s a ênfase na política desenvolvimentista foi o desenvolvimento industrial urbano, com o setor agrícola sendo considerado como uma fonte de recursos e serviços, principalmente mão-de-obra, para o setor de manufaturados.
Foi somente nos anos 1960’s que o papel positivo da agricultura como instrumento de desenvolvimento foi aceito. Eventos subsequentes nos anos 1970’s e 1980’s reforçaram a necessidade de se dar uma maior atenção às políticas de desenvolvimento agrícola. Mas, mesmo hoje, alguns países em desenvolvimento ainda não dão a devida importância ao desenvolvimento agrícola. Se a agricultura tem que ser produtiva, é evidente que as culturas devem receber, de uma fonte ou outra, os nutrientes de que elas necessitam.Um estudo do IFPRI, de junho de 1996, em relação a América Latina, confirmou como o desenvolvimento agrícola ajuda toda a economia.
  • Quando a renda dos produtores aumenta, eles gastam dinheiro em itens não relacionados à agricultura, criando empregos para outros segmentos de toda a economia. Esse estudo mostra que para cada US$1,00 de aumento na produção agrícola nos países em desenvolvimento, a economia geral cresce US$2,30.
Além de ser importante para a economia nacional, a agricultura produtiva ajuda a aliviar a pobreza rural. A maior parte dos pobres do mundo está no meio rural e, mesmo que eles não estejam engajados em suas próprias atividades agrícolas, contam com empregos e renda fora do campo que dependem direta ou indiretamente da agricultura. A população pobre no meio rural atinge mais de 75% dos pobres em muitos países do Sub-Sahara e da Ásia. O crescimento econômico está fortemente ligado à diminuição da pobreza.
  • A pobreza é, por si mesma, uma forma de poluição, e, além disso, o pobre é freqüentemente forçado a usar em excesso ou de maneira errônea os recursos naturais com a finalidade de atender suas necessidades básicas.
Outro relatório da IFPRI, de fevereiro de 1994, descreve os resultados de um estudo em sete países da Ásia, com grande diversidade de ambientes de produção e estruturas agrária e política, em relação aos efeitos de mudanças tecnológicas em áreas favoráveis para a produção de arroz, na renda de pessoas de áreas não favoráveis - aquelas que não tiveram acesso a essa nova tecnologia. 
  • Esse relatório mostra que, quando efeitos indiretos de ajustes no trabalho, terra e mercado de produtos são levados em conta, a adoção diferenciada de variedades altamente produtivas pelos vários ecossistemas não piora de maneira significativa a distribuição da renda. À medida que a adoção de variedades de alta produtividade aumentou a demanda por mão-de-obra nas áreas favoráveis, intensificou-se a migração interna das áreas menos favoráveis, o que reduziu os possíveis efeitos negativos pela equalização dos salários regionais. Mudanças para culturas alternativas ou empregos fora da área rural nas áreas favoráveis também contribuíram para essa equidade.
Um relatório de 1997 do Conselho Nacional de Pesquisa em Economia Aplicada da Índia afirma que a Índia poderia virtualmente eliminar a pobreza urbana em uma década se pudesse manter um crescimento econômico anual de 6,4%. Mas o relatório também prevê aumento das disparidades entre cidades desse país e a área rural onde vivem 74% da população. A agricultura está estagnada. O relatório prevê que os 26% da população urbana vão aumentar para 30% em 2007, mas isto não leva em conta uma rápida e acelerada urbanização pelo aumento nas disparidades de renda.

A compostagem é um processo biológico de decomposição, que transforma matéria orgânica – restos de origem vegetal ou animal – em uma mistura rica, que pode ser usada como adubo

Solos:
  • Como afirma A. E. Johnston (1997), a fertilidade do solo depende de interações complexas e pouco compreendidas entre as propriedades biológicas, químicas e físicas do solo. Compreender e quantificar essas interações vai se tornar cada vez mais importante. O autor observa que será necessário no futuro reconhecer de modo mais claro que existe uma diferença entre a produtividade agrícola e a fertilidade de um solo:
Desde que a fertilidade do solo esteja num patamar satisfatório e considerando-se as limitações climáticas, a produtividade agrícola pode ser controlada pela aplicação de insumos anuais, tais como N, e produtos químicos para controlar plantas invasoras, pragas e doenças.
  • Contudo, a fertilidade do solo é freqüentemente controlada por fatores que normalmente, no curto prazo, são difíceis de se manipular; por exemplo, propriedades químicas do solo como acidez e disponibilidade de nutrientes.
Sempre que possível será necessário definir limites críticos de fertilidade do solo e assegurar que os teores de nutrientes nos solos sejam mantidos logo acima desses limites. Abaixo do valor crítico, perdas em produtividade se constituem em uma séria ameaça financeira à sustentabilidade de qualquer sistema produtivo.
  • Manter os teores de nutrientes no solo muito acima do valor crítico constitui-se em um custo financeiro desnecessário para o agricultor e pode ter implicações ambientais.
Esgotamento de nutrientes:
“A perda da fertilidade em muitos países em desenvolvimento constitui-se em uma ameaça imediata à produção de alimentos e poderia resultar numa catástrofe não menos séria do que outras formas de degradação ambiental”.
“Solos agrícolas perdem sua fertilidade pela remoção dos nutrientes e, em alguns casos, pelo esgotamento desses... uma ameaça real e imediata à segurança alimentar, à vida e à subsistência de milhões de pessoas. A perda da fertilidade diminui a produtividade e afeta a capacidade de retenção de umidade, levando a uma maior vulnerabilidade à seca.” (FAO - nota de imprensa, Abril de 1990).
  • Um solo fértil e produtivo é o recurso fundamental para o agricultor e para todo o ecossistema. O objetivo do agricultor é manter a produtividade do seu solo. Isso implica em uma boa administração de sua parte; ou seja, mantendo uma boa estrutura física, um bom teor de matéria orgânica, boa aeração, teor adequado de umidade, pH adequado e um ótimo “status” nutricional. O manejo desse sistema é complexo.
A sequência de culturas, o número de cabeças de gado na propriedade e as técnicas de cultivo utilizadas pelo agricultor ou pecuarista, podem reduzir ou aumentar a produtividade do solo.
Em relação aos nutrientes de plantas, a demanda geral da cultura e a quantidade removida do solo deve ser reposta, não necessariamente todo ano, mas certamente dentro de um sistema de rotação de culturas geral, se o objetivo é manter os níveis de fertilidade do solo e a produtividade a longo prazo (sustentabilidade).
  • O parágrafo seguinte é parte de um relatório do IFPRI sobre A Situação dos Alimentos no Mundo, publicado em outubro de 1997. “Falhas no passado e atuais na reposição de nutrientes no solo em muitos países podem ser corrigidas pelo uso eficiente e balanceado de fontes desses nutrientes e pelo uso de práticas adequadas de manejo de solos. 
Enquanto algumas das necessidades de nutrientes de plantas podem ser atingidas pela aplicação de materiais orgânicos disponíveis na propriedade ou na comunidade, tais materiais são insuficientes para repor os nutrientes de plantas removidos dos solos. É extremamente importante que o uso de fertilizantes aumente nesses países onde uma grande proporção da população sofre de desnutrição, gerando uma questão de segurança alimentar. Um dos maiores problemas ambientais hoje na África é o gradual declínio na fertilidade de muitos solos”.
  • A “mineração” dos nutrientes é parte do custo de produção das culturas, mas é normalmente um custo escondido que não é passado aos consumidores. Sob tais circunstâncias, o uso de recursos públicos para ajudar a repor esses nutrientes pode ser justificável, especialmente no caso em que a situação financeira dos agricultores é precária.
O impacto dos fertilizantes na estrutura do solo:
  • Muitas vezes se afirma que o uso de fertilizantes minerais tem um efeito adverso na estrutura do solo. Evidências obtidas em experimentos de longa duração indicam que este não é o caso. A ação agregante do aumento da proliferação de raízes e da maior quantidade de resíduos formada de culturas bem adubadas torna o solo mais friável, fácil para cultivar e mais receptivo à água. S. W. Buol e M. L. Stokes (1997) afirmam: “Teores de carbono orgânico que diminuem sob adubação inadequada parecem se recuperar quando doses adequadas de fertilizantes são aplicadas. 
A adubação adequada também contribui para maior produção de biomassa que tende a proteger o solo da erosão e fornece maiores quantidades de resíduos que são críticos para a agregação do solo. Nós concluímos, então, que, a longo prazo, a agricultura de altos insumos tem um forte efeito positivo na melhoria das propriedades agronômicas dos solos”. Parcelas experimentais de campo na Estação Experimental de Rothamsted na Inglaterra, que receberam fertilizantes químicos desde 1843, são mais produtivos hoje do que em qualquer período do passado. 
  • Na estação experimental de Askov na Dinamarca, após 90 anos, as parcelas que receberam fertilizante NPK tinham 11% mais carbono orgânico do que a parcela testemunha sem adubo. O aumento do teor de matéria orgânica, induzido pelas aplicações de NPK, resultou em uma diminuição na densidade do solo e um concomitante aumento na porosidade total (R. J. Haynes e R. Naidu, 1998). Eles concluíram que “O efeito positivo a longo prazo, da aplicação contínua de materiais fertilizantes no teor de matéria orgânica e condições físicas do solo é um fator importante, mas geralmente negligenciado, que precisa ser considerado quando se contempla sustentabilidade”. 
No Japão, após 50 anos de adubação NPK, não houve diminuição na produção nas parcelas adubadas. A produtividade das parcelas sem adubação foi cerca de 40% das parcelas adubadas (A. Suzuki, 1997).

Acidificação do solo:
  • A maioria dos fertilizantes nitrogenados, especialmente sulfato de amônio e menos intensamente o nitrato de amônio, acidifica o solo, embora isso possa ser menos acentuado em alguns solos. O uso de resíduos orgânicos, nas doses normais de aplicação, pode não evitar a acidificação, mas pode reduzir a velocidade do processo.
Os efeitos acidificantes de alguns fertilizantes nitrogenados podem ser corrigidos se o calcário estiver economicamente disponível e for aplicado. Nas regiões temperadas, o calcário aplicado em doses equivalentes a toneladas por hectare, mas menos freqüentemente que os fertilizantes, provê condições ótimas para o crescimento de muitas espécies de culturas dessas regiões. Além de neutralizar a acidez do solo, a calagem melhora a disponibilidade de outros nutrientes, como o fosforo, e diminui a toxidez de alumínio e manganês. Em um experimento de longa duração na Índia, com a aplicação contínua de fertilizantes sem calcário, a produtividade caiu a zero. Quando o pH do solo foi mantido perto do ótimo, o sistema tornou-se sustentável.
  • Nos trópicos úmidos, as exigências de calcário são altas e o efeito pode não durar por longos períodos por causa das perdas por lixiviação. Entretanto, às vezes, podem ser alcançados aumentos em rendimentos da cultura com mínimas aplicações de calcário, por causa da diminuição da toxidez de alumínio e/ou da deficiência de cálcio e, também, deve-se tomar cuidado para evitar super-calagens (R. J. Haynes e R. Naidu, 1998). Em muitos países em desenvolvimento, o calcário agrícola não está disponível a um custo econômico. Uma possível solução seria o desenvolvimento de cultivares que são tolerantes aos efeitos diretos e indiretos da acidez do solo.
Erosão:
  • Erosão do solo é um fenômeno mundial, mas é mais sério em algumas regiões do que em outras. Em regiões onde uma estação seca se alterna com uma estação com chuvas torrenciais, a erosão do solo pode ser muito severa. Ao término da estação seca, o solo normalmente apresenta uma cobertura vegetal esparsa, particularmente se a área foi excessivamente pastoreada pelo gado. Sob condições semi-áridas a erosão eólica e a desertificação são problemas sérios.
Um solo fértil com culturas de crescimento rápido é muito menos propenso a erosão que um solo pobre com vegetação rala. Quanto mais desenvolvida for a cobertura vegetal, maior será a proteção contra a ação do vento e da água. Por causa do sistema radicular vigoroso e da maior quantidade de resíduos, culturas de alta produtividade ajudam a segurar o solo. As raízes e os resíduos que voltam ao solo melhoram a produtividade pelo aumento de matéria orgânica, melhorando também a aeração e as taxas de infiltração de água. Os efeitos residuais da maior produção de matéria orgânica também são significativos no melhoramento da agregação do solo.
  • Um manejo da terra adequado à topografia e pluviosidade, juntamente com o uso apropriado de fertilizantes, podem ser uma importante contribuição para a conservação do solo.
Práticas de cultivo mínimo reduzem significativamente a erosão; a proporção de áreas sob técnicas de plantio direto está se expandindo rapidamente nos E. U. A. e outros países, como por exemplo, no Brasil.

Substâncias Tóxicas:
  • Fertilizantes fosfatados contêm, freqüentemente, quantidades pequenas de elementos que ocorrem naturalmente na rocha fosfática e são levados pelo processo industrial, para o produto acabado. Quando o produto final é um material de valor relativamente alto para uso, por exemplo, na indústria de alimentos, os elementos potencialmente prejudiciais são removidos, mas, até hoje, não foram encontrados processos para remover, economicamente, esses elementos na produção de fertilizantes. Entre esses elementos, a maior atenção tem sido dada ao cádmio (Cd).
Existem evidências de que o teor de Cd está aumentando lentamente em alguns solos. Isto é uma preocupação, porque o Cd não é essencial para as plantas ou animais e, em níveis altos, pode ser tóxico. As fontes incluem deposição atmosférica de processos industriais, lodo de esgoto, estercos de animais e fertilizantes fosfatados. Em muitos países europeus, 50% da contribuição total de Cd para os solos agrícolas vêm de fontes transportadas pelo ar. Lodo de esgoto contém quantidades de Cd que podem variar de poucas ppm (partes por milhão) a milhares de ppm. O uso de fosfatos de rocha com baixos teores de cádmio, na fabricação de fertilizantes fosfatados, é uma solução, mas o suprimento total de rochas com essas características é limitado. Isso dá ênfase à necessidade do desenvolvimento efetivo e viável de processos de remoção de cádmio e pesquisas com esse objetivo continuam.
  • A solução final poderia ser uma combinação da remoção de Cd durante o processo industrial e estratégias de manejo nas propriedades agrícolas que minimizem sua entrada potencial na cadeia alimentar. A absorção de Cd pelas plantas pode, de fato, ser afetada por muitos fatores, como pH do solo, teor de umidade, variedade etc., que podem ser controlados pelo agricultor.
Não há nenhuma urgência imediata nisso, porque, fora alguns poucos locais fortemente poluídos pela indústria, níveis de cádmio no solo estão geralmente bem abaixo dos níveis críticos.
  • Porém, a existência de um problema a médio e longo prazos é reconhecida pela indústria de fertilizantes e estudos e pesquisas sobre o assunto continuam.
Água:
  • Existe uma preocupação segundo a qual os fertilizantes estão poluindo águas de superfície e dos aquíferos, embora o impacto direto da aplicação de fertilizantes minerais no conteúdo de nitrato de águas não esteja claramente definido.
De acordo com a União das Indústrias de Fertilização (UNIFA, 1997) na França, estima-se que fertilizantes nitrogenados respondam por 25% do nitrogênio mineral total introduzidos anualmente no ecossistema, ou 2,3 milhões de toneladas de N de um total de 9,6 milhões. Outras contribuições principais são do nitrogênio fixado por plantas leguminosas (3 milhões de toneladas de N) e resíduos animais (2 milhões de toneladas de N). Em uma área de uma bacia hidrográfica principal na França, 42% do nitrogênio na água eram de origem agrícola (terra arável e gado), 49% doméstico e 9% industrial. 
  • Experimentos com 15N indicam que, não mais que 5% de nitrogênio do fertilizante é perdido para a água durante uma estação de crescimento das plantas, sendo que dois terços disto são devidos a práticas incorretas de adubação. Em geral, a extensão das perdas não está diretamente ligada a aplicações recentes de fertilizantes. Das perdas agrícolas, 50% eram de solos que foram deixados descobertos (sem vegetação) durante o inverno e 33% devido a práticas agrícolas incorretas, ou seja, as perdas poderiam ser evitadas.
Água potável:
  • Nos meados de 1980’s, a Organização Mundial de Saúde (WHO) recomendou um limite máximo de 50 mg de nitrato, NO3-, por litro de água potável. Eles revisaram a recomendação em abril de 1997 e concluíram que, com base na mais recente evidência científica, deveria ser mantido o valor de 50 mg por litro.
A União Européia (EU) emitiu uma norma para água potável em 1975. Em 1980, outra norma adotou um nível de 50 mg por litro. Então, em dezembro de 1991, a União Européia adotou uma norma, conhecida como Norma para Nitratos, que trata da proteção das águas contra poluição causada por nitrato de fontes agrícolas.
  • Essa norma reconheceu que, apesar do uso de fertilizantes que contêm nitrogênio e estercos ser necessário para a agricultura na União Européia, qualquer uso exagerado desses produtos se constitui em um risco ambiental. Enfatiza que ações conjuntas são necessárias para controlar os problemas decorrentes da produção intensiva de gado, e as políticas agrícolas têm que levar mais em conta a proteção ambiental.
Os objetivos dessa norma são assegurar que a concentração de nitrato na água doce de superfície e do lençol freático não exceda o limite de 50 mg por litro e controlar a incidência de eutroficação.
  • Tendo fixado os objetivos gerais, essa norma requer que os países membros, dentro dos limites prescritos, preparem seus próprios planos para que esses limites sejam alcançados. Esses planos envolvem a preparação de um Código Voluntário de Boas Práticas Agrícolas, o estabelecimento de zonas vulneráveis à poluição das águas com compostos nitrogenados e a implementação de programas de ação projetados para prevenir poluição dentro dessas zonas. As medidas incluem um limite máximo para a aplicação de esterco animal - o maior culpado - equivalente a 170 kg de nitrogênio (N) por hectare. Além disso, são definidos os períodos nos quais é aceitável a aplicação de estercos animais.
As técnicas agrícolas para manter o nitrato fora dos suprimentos de água são conhecidas. A Associação dos Fabricantes de Fertilizantes da Europa (EFMA), por exemplo, explica essas técnicas em um Código de Melhores Práticas Agrícolas (EFMA, 1996).
  • Em geral, em países desenvolvidos, onde o fertilizante nitrogenado mineral é uma das fontes principais de poluição de água, isto ocorre, normalmente, em áreas de produção de hortaliças ou em solos arenosos sob irrigação, ou onde as doses ótimas são excedidas. Uma distinção deve ser feita entre uma adubação correta com nitrogênio e uma aplicação excessiva de excremento animal.
Há geralmente pouco perigo da poluição de nitrato das águas subterrâneas pela aplicação de fertilizantes em culturas de sequeiro em países em desenvolvimento, porque as taxas de aplicação tendem a estar bem abaixo do ótimo. Em agricultura irrigada, o manejo da água é um ponto importante.

Águas de superfície:
  • O super enriquecimento das águas de superfície que conduz a uma multiplicação excessiva de algas e outras espécies de plantas aquáticas, com várias conseqüências indesejáveis, é um fenômeno conhecido como eutroficação. Enquanto o fósforo tende a ser o nutriente limitante em águas interiores, o nitrogênio tende a ser o nutriente limitante em águas litorâneas.
Águas litorâneas:
  • Na Europa, grandes áreas do litoral do Mar do Norte e áreas do Mediterrâneo têm sofrido eutroficação devido a nitrato. Nos E.U A., nitrato e fosfato têm sido suspeitos de causar Hypoxia, ou a “Zona da Morte” no Golfo do México. Existe muita controvérsia sobre a causa, e mesmo se esses nutrientes forem realmente a causa, eles podem se originar de diversas fontes além dos fertilizantes minerais. Água enriquecida de nutrientes, especialmente aquela proveniente do escorrimento superficial na agricultura, é também incriminada pelo problema de Pfiesteria que matou um número grande de peixes na Baía de Chesapeake, E. U. A., no verão de 1997. É altamente improvável que os fertilizantes minerais sejam os principais responsáveis por qualquer um desses problemas, mas a indústria de fertilizantes norte-americana está cooperando totalmente nas investigações.
Águas interiores:
  • Em corpos de água doce, sob condições temperadas, o fósforo (P) é normalmente o nutriente limitante e mesmo concentrações muito baixas podem causar problemas de eutroficação. Águas superficiais podem ser enriquecidas com P de fontes pontuais (ex: tratamento de esgotos) ou fontes difusas (ex: áreas sob agricultura).
Como a quantidade de P das fontes pontuais diminuiu em anos recentes, a contribuição percentual de fontes difusas aumentou. Embora geralmente tenha sido aceito que a maioria dos solos fixa fortemente o P, mesmo pequenas quantidades de P perdidas do solo podem manter a concentração de P na água de drenagem em níveis prováveis de causar problemas ambientais.
  • O fosfato no solo é bastante imóvel e a perda de fosfato solúvel em água por lixiviação é normalmente muito pequena (menos de 1 kg de P2O5 por hectare por ano). Ignorando a remoção pelas culturas, os dois caminhos primários de perda de fósforo do solo são a erosão (vento e água) e o escorrimento superficial. 
Nas condições européias, as excessivas aplicações superficiais de estercos animais podem resultar em perdas significativas de sedimentos pelo escorrimento superficial. Áreas sob exploração intensiva de gado de leite podem estar sujeitas à aplicação de quantidades excessivas de fósforo ao solo, normalmente na forma de aplicações pesadas de resíduos animais, i.e. chorume ou esterco de curral. Sob essas condições, os solos podem ter um conteúdo tão alto de fósforo que as perdas podem aumentar. Em lagos tropicais, existem evidências de que o nitrogênio pode ser o nutriente limitante.
  • Concentrações de fosfato na água são frequentemente mais altas do que nas regiões temperadas enquanto as contribuições de N dos solos circunvizinhos podem ser baixas.
Escorrimento superficial (inclusive erosão) de áreas com culturas anuais, pastagem e florestadas pode contribuir na carga de fosfatos das águas superficiais. Melhores práticas de manejo são altamente eficientes para eliminar essa possibilidade e, ao mesmo tempo, permitir o mais eficiente uso da adubação da cultura.

Potássio:
  • Diferentemente do nitrogênio e do fósforo, o potássio não tem nenhum efeito danoso conhecido na qualidade de águas naturais (J.K. Syers, 1998).
AR:
  • O nitrogênio pode ser perdido de sistemas agrícolas por três formas que podem causar poluição; perda de nitrato por lixiviação, volatilização de amônia e perda de óxido nitroso durante os processos de desnitrificação. Perdas de amônia para a atmosfera e sua deposição subseqüente contribuem para a eutroficação de “habitats” naturais e águas marinhas e também para a acidificação de solos e lagos, quando o NH4 + é convertido a NO3 -. Perdas através de desnitrificação são inofensivas se o produto final for nitrogênio gasoso, mas se o gás resultante for óxido nitroso há uma contribuição efetiva ao efeito estufa e à depleção de ozônio na estratosfera.
Amônia:
  • H. Kirchmann (1998) observou que a deposição de amônia da atmosfera pode enriquecer ecossistemas terrestres e aquáticos. Em média, na Europa Ocidental, 92% de toda a amônia se originam da agricultura.
Aproximadamente 30% do nitrogênio excretado por animais nas fazendas são liberados para a atmosfera dos estábulos, durante o armazenamento, pastoreio e aplicação dos estercos ao solo. Emissões de amônia de áreas com culturas em crescimento são baixas, mas as emissões podem ser maiores nos restos culturais em decomposição. A produção do composto resulta em grandes perdas de amônia.
  • Deposição de amônia ocorre mesmo em áreas onde pequenas quantidades teriam sido aplicadas. Essa deposição, juntamente com óxidos de nitrogênio, diminui a biodiversidade, mas pode aumentar o armazenamento de carbono em sedimentos e solos florestais. Perto de grandes fazendas de gado, efeitos tóxicos localizados podem causar dano à vegetação circunvizinha.
Deposição de amônia contribui para a acidificação do solo à medida que a amônia é nitrificada para nitrato e então o nitrato é perdido por lixiviação. A amônia também pode reagir na atmosfera com óxidos de enxofre para formar sulfato de amônio que chega ao solo com a chuva, causando acidificação.
  • Embora a maioria das emissões de amônia seja de estercos e fontes naturais, experimentos demonstram que perdas de nitrogênio à atmosfera na forma de amônia que seguem a aplicação de uréia podem chegar a 20% ou mais, sob condições temperadas. Perdas acontecem quando a uréia não é imediatamente incorporada ao solo e essas perdas são particularmente altas em solos calcários. A prática de plantio direto e/ou cultivo mínimo, em expansão, está aumentando a aplicação superficial de uréia e aumentando também as perdas. Perdas ainda maiores, até 40% ou mais sob condições tropicais, têm sido observadas em arroz inundado e em culturas perenes (banana, cana-de-açúcar, dendê e seringueira) nas quais a uréia é aplicada na superfície.
Gases de efeito estufa:
  • Gás carbônico (CO2), metano (CH4) e óxido nitroso (N2O) são os três gases mais importantes, causadores do efeito estufa. Eles absorvem a radiação solar ao invés de permitir que o calor irradie para longe da terra. O impacto dos gases de efeito estufa, ou potencial de aquecimento global (GWP), é uma função de dois fatores: sua “força de radiação” e a vida média desses gases no ar. Considerando o GWP do CO2 como 1, o do CH4 é 21 e o do N2O é 310.
Gás carbônico:
  • A fixação do gás carbônico através da fotossíntese é a fonte de carbono orgânico para as culturas e eventualmente para os solos.
Práticas de produção das culturas que aumentam a atividade fotossintética melhoram a retenção de carbono. A decomposição da matéria orgânica libera gás carbônico de volta para a atmosfera. Boas práticas de adubação e preparo do solo melhoram o ganho líquido de carbono no solo.
  • Estimativas recentes indicam que áreas agrícolas e florestadas do hemisfério norte são agora um dreno para gás carbônico no complexo solo/planta devido ao aumento no crescimento da vegetação. De acordo com E. Solberg (1998), para cada kg de nitrogênio aplicado como fertilizantes, 10 a 12 kg de carbono podem ser sequestrados. O rápido crescimento da área sob plantio direto ou cultivo mínimo está ajudando a reconstruir a matéria orgânica do solo, e, conseqüentemente, aumentando a quantidade de carbono armazenada.
Óxido nitroso:
O óxido nitroso apresenta um efeito estufa e é considerado prejudicial à camada de ozônio.
  • De acordo com peritos do Painel Intergovernamental em Mudanças Climáticas (IPCC), o óxido nitroso é responsável por 7,5% do efeito estufa calculado como decorrente da atividade humana. Sua concentração na atmosfera está aumentando a uma taxa de cerca de 0,2% por ano. Solos são a principal fonte global de N2O, respondendo por cerca de 65% de todas as emissões; elas são resultado de processos microbianos. Fertilizantes nitrogenados podem ser fontes diretas ou indiretas de emissões de N2O; o IPCC assume, atualmente, um fator médio de emissão de N2O do fertilizante nitrogenado de 1,25%, mas com uma amplitude de variação de nove vezes, ou seja, de 0,25 a 2,25%. Em geral, é provável que estratégias de manejo da adubação que aumentem a eficiência de absorção de N pelas culturas reduzam as emissões de N2O para a atmosfera. Para informações adicionais,
A produção de metano ocorre, principalmente, da decomposição de partes de plantas em áreas encharcadas, de áreas com cultura do arroz inundado, da fermentação gástrica dos animais ruminantes, dos excrementos animais, dos esgotos domésticos e fontes abióticas, tais como mineração de carvão e gases naturais, etc. O impacto direto de fertilizantes químicos na emissão de metano não está claro. 
  • Nos E. U. A., estima-se que as fontes agrícolas respondam por 29% das emissões de metano. Das emissões agrícolas, animais ruminantes respondem por 62%, excrementos animais por 32% e campos de arroz inundados por 5%. Existem indicações de que práticas de cultivo e adubação nitrogenada diminuem a taxa pela qual o CH4 é retirado da atmosfera pelos solos, contribuindo, como conseqüência, para os níveis atmosféricos de metano, mas essas quantidades são pequenas em relação ao total das fontes (W. Griffith e T. Bruulsema, 1997). 
A. Suzuki (1997) relata que campos de arroz inundado no Japão respondem por aproximadamente 10 a 30% das emissões totais de metano de todas as fontes. Nessas áreas, o metano é formado pela decomposição anaeróbica da matéria orgânica.A adição de matéria orgânica de fácil decomposição aumenta de forma significativa as emissões de metano.

O Uso de Fertilizantes Minerais e o Meio Ambiente